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The purpose of study was to investigate the application

3 of theories for the design of robust control systems for

multiple input multiple output systems, and to apply these

techniques to a realistic control system. The techniques

3 investigated are known as the H2 and HO design techniques, and

involve the minimization of the 2- and oo-norms of the system

3 transfer function matrices. Considerable system modification

is required to apply these techniques, and a methodology for

I accomplishing this modification is developed. Evaluation of

i the controllers developed requires simulating the system

performance, and a digital simulation is developed for this

3 purpose.

I received considerable help in developing the

I controllers and simulation contained herein, and for this help

i I am deeply grateful. I am indebted to my advisor, Capt. D.

Brett Ridgely, for the many hours he spent tutoring me in H2

and H control theory, as this material is not supplied in any

class offered at AFIT at this time. I am grateful to my

3 thesis committee members, Capt. Curtis P. Mracek, Capt. Randy

N. Paschall, and Dr. Brad Liebst, for their invaluable help in

keeping my thesis comprehensible and complete. I wish to

3 thank Jim Coburn of Sverdrup Technology, Inc. for supplying

the generic missile model and data from which '!- model herein

was derived. For getting me started in the rig direction

and for their unfailing years of support, I thank my parents,U
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5 Janet and Leon Riddle. Most of all, I wish to thank my wife

Sherry for her unbelievable understanding and tolerance on

those many nights when I was glued to the computer, and for

i always providing a warm and loving port in the storm.

Randall L. Riddle
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A, B, C, D state space matrices

A missile normal accelerationAn

A Are f  missile reference area

a speed of sound

C stability derivative

C n stability derivative

cg center of gravity

3 H, Hardy .pa with finite 2-iiorm

H Hardy space with finite tn-norm

h altitude

I moment of inertia; identity matrix

I K() gain

LOS line-of-sight

Lref missile reference length

i M Mach number

M. dimensional stability derivative

i m missile mass

N( dimensional stability derivative

q dynamic pressure

3 RT range to target

r vector of command signals

SS u, Sy Cholesky matrix

s Laplace variable

iX1
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I matrix of transfer furncti.ns

u control signal

V missile velocity

I v output vector

W() weighting filter

w external disturbances

I X2  Riccati solution

X Ricrati solution

x state vector

Y 2 Riccati solution

Y Riccati solution

y output vector; error vector

angle of incidence

r missile bearing angle

normally distributed random variable

I 6 fin deflection

I n sensor noises

9m  missile heading anglemI
e s  antenna angle relative to missile

plant disturbances

I p air density; weighting matrix

p spectral radius

asingular value

T time constant

0 boresight error signal

I Oe tzue boresight error

OT bearing to target

i xii
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U antenna servomotor input; frequency

U) first derivative

U) second derivative

I U) scaled or normalized value

(.)COM commanded value

1.1 magnitude

*11 1100 2-norm
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I
H 2 and H design techniques are applied to a state space

representation of a surface-to-air missile system with

unstable nonminimum phase airframe response characteristics.

A method for converting the tracking and command following

problems to the "standard problem" is given. Artificial

I frequency-dependent filtering of external inputs is required

for proper closed loop system performance, and a method for

I deriving the filters is developed. Areas requiring further

i study are identified.
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DESIGN OF A ROBUST CONTROLLER FOR AN UNSTABLE

NONMINIMUM PHASE GUIDED MISSILEi

I i. INTRODUCTION

i The purpose of this thesis is to investigate and apply

new H 2 and H robust control system design techniques to a

surface-to-air missile control system, and compare the

performance of the resultant systems to the performance of a

system with a controller derived from conventional control

system synthesis techniques.

A surface-to-air missile example was chosen for

comparison because it will test the robust controller design

methodologies' capability to handle extreme cases. The

transfer functions of the chosen missile have right half-plane

poles and zeros (open-loop unstable and nonminimum phase).

The missile is unstable due to the location of the center of

gravity, which is aft of the aerodynamic center, and is

nonminimum phase due to the use of tail-mounted control

surfaces. The objective is to design a controller which

i stabilizes the system and makes it responsive to commands so

that guidance commands successfully steer the missile to the

i target.

Three design methodologies will be compared. The first

is a classical approach, using root locus and time response

analyses to derive a control system with good performance in

i 1-1
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i :he ,-,minai case. The second 1s :he H 2 approach which

3 provides robustness for systems exposed to well-defined

stochastic disturbances and parameter variations. The third

'i the H 0 methodology which minimizes system response to

unknown but deterministic disturbances and provides robustness

with respect Lo unstructured uncertainties. The relative

3 performance of these methods will be compared by implementing

edch controller in a two degree-of-freedom digital simulation.

To provide a baseline for performance, each controller will

first be implemented in a nominal model which is not subject

I to disturbances. Each will then be implemented in a more

3 realistic model which provides: (a) both time-varying and

constant parameter variations in the system components and

3 equations of motion, (b) stochastic disturbances via target

glint, sensor noise and turbulence, and (c) deterministic

I disturbances via loss of target data. The measure of merit

used for these simulation runs will be miss distance, as well

as detailed examination of missile transient responses.

I
I
I
I
I
I
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I
The scope of this report is broad, as a large number of

tasks must be completed prior to comparing the performance of

the different controllers. These include development of the

I system description, conversion to state space format,

derivation of the different controllers, and simulation of the

missile engagement scenarios. This chapter details how these

tasks are organized and presented in this report, so it will

be easier for the reader to follow the development.

IMisi St

In Chapter III, the missile system is described in

detail. The equations of motion for the missile body are

I developed and the system transfer functions are given for both

the missile body and the target tracking system. Flight

conditions are described for both: (1) a nominal situation

3 where the environment and missile system are not subject to

changes or variations, and (2) a more realistic situation

I where the environment changes, the missile system components

are subject to variation, and disturbances enter the system.

State Space Representation

I In Chapter IV, the missile system description given in

Chapter III is converted to a state space representation,

which is necessary to apply the robust control methods. Both

I
I 2-1
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U the nominal model and the model with variations are describd

in detail.

Clsia Co nt rol SytmDsg

In Chapter V, a controller for the missile system is

3derived using standard classical design techniques, including

root locus, time response, and frequency domain analysis.

IAcceptable performance is obtained with a simple proportional

3 1feedback controller. The author realizes that better

performance could probably be obtained with lead/lag,

3integrator, and derivative controllers. Due to scope

limitations, however, these options were not pursued In favor

I :of focusing on robust controller design.

H 2 C2DLUtrllDsg

In Chapter VI, the theory for H2 controller design is

Ireviewed and applied to the missile system. This involves

some manipulation of the original state space representation

and addition of many artificial weighting filters to the plant

1inputs and outputs to get the problem into the form solvable
by existing theory. Producing these manipulations and

i artificial filters constituted the bulk of the design effort,

and the methods for selecting these are described in detail.

CoQntzrgUlz Deign~

I In Chapter VII, the theory for H controller design is

3 applied to the missile system. The plant manipulations and

artificial filtering of inputs and outputs needed for this

i
l 2-2
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des ign effort are similar to those needed for the H design.

3 For this system, no additional problem formulation effort is

required, so this chapter is devoted solely to a review of the

H problem requirements and derivation of the controller.

Performance Comar~iso~ns

In Chapter VIII, the performance of each of the

I controllers developed is compared. Comparison is based on

missile flyout simulation results, with miss distance being

the primary figure of merit. Development of the flyout

3 simulation is briefly discussed. Comparison of flyout time

histories allows some qualitative comparisons in addition to

the quantitative results yielded by miss distance comparison.

Results Conclusions

In Chapter IX, the author makes remarks about the

I advantages and disadvantages of the robust controller designs

and methodologies. Areas of further study are identified.

The artificial filters developed for the H, and I-

3 controller designs are described in detail in Appendix A.

U ZFlyt. TsM Histories

Appendix B contains missile system output time histories,

3 missile and target position plots, and tabulated state

histories for a representative sample of the flyout runs.

I
I
* 2-3
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I
IThe controllers obtained for the H 2 and H COdesigns are

I composed of 24 states each. Reduced-order controllers were

obtained for use in the simulation. Both the full-order and

reduced-order controllers are described in detail in

Appendix C.

I
I
I
U
I
I
3
I
I
I
I
I
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The surface-to-air missile system description used herein

is provided by Sverdrup Technology, Inc. [12]. The system

I description is derived from a digital model generated by Jim

Coburn of Sverdrup as a generic model of a tail-control

missile to be used for training and experimentation purposes.

The model is composed of: (1) a system-specific data

base, and (2) a simulation execution program. The simulation

I execution program is generic in its routines, and depends upon

specific data provided by the data base for simulation of a

I particular missile system. The data base for a generic

3 tail-control missile created by Coburn, with some slight

modifications, was used. These modifications include

3 simplification of the antenna servomechanism for ease of

computation, omission of lowpass filters associated with the

servo op-amp, moving the center of gravity aft to cause the

3 system to be statically unstable, and simplification to two

dimensions.

3 Missile velocity and altitude time histories are

postulated to provide some realistic parameter variations.

I Any inaccuracy in this representation of the model is solely

the fault of the author.

The model developed herein describes motion in a single

plane only, and does not simulate missile axial forces (drag)

or the effects of gravity.

I
3 3-1
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I The following equations of motion [2] model the airframe

3 dynamics. They are used to derive the transfer functions and

state space models associated with the airframe.

I A n(s) = N C (s) + N6 6(s) (3.1)

I (s) = -M a(s) + M. 6(s) (3.2)

a(s) = e (S) Y r(5) (3.3)

A n(s) N a(s)+N 6 6(s)

rlvi =v+N 6( (3.4)

*I with the above defined as

An = component of acceleration normal to airframe

m = missile heading angle

Sa = angle of attack

r = bearing of missile velocity vector

S6 = control surface deflection

IVI = magnitude of missile velocity

The dimensional stability derivatives [9:412-4451 are given by

N O= Cn  q Aref/a (3.5)

N 6 = Cn. q Aref /M (3.6)

Ma = C qA Lre Lref/1 (3.7)

M6 =C Are f L ref/1 (3.8)

where the stability derivatives (Cn , etc.) are tabulated in

(121 as a function of Mach number, and the other parameters

I
* 3-2
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a r a e f t & 'A
2 2

q= dynamic pressure (=pV /2) (N/rn

Aref - missile reference area (= 0.031m [12])

I m missile mass (kg)

I missile moment of Inertia (kg-m 2)

Lf Missile reference length (= 0.2m (12])

*The sign conventions used for the missile airframe parameters

are as shown in Figure 3.1.

I
* VX

3/Inertial Reference

I

Fig 3.1. Missile Sign Conventions

The target tracking antenna and servomechanism are

3attached to the front end of the missile. The tracker data is

given in transfer function form in (121 and will be listed in

Uthe next section.

Nominal Flight Cndition

This section lists the values used In the nominal model.

For this time-invariant description, all flight conditions are

1
*3-3
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i held cu sii ant, and no riolse -r disturbances enter the 5ysteu.

The nominal flight conditions (fixed based on data from [12]

and with atmospheric data from (1]) are listed in Table 3.1.

A computer simulation of the missile flyout will be

constructed using these constant values for the nominal flightI
condition. This model will be used as a baseline for

determining noise and disturbance effects.

i Table 3.1. Nominal Flight Conditions

Center of Gravity 2.63 m

Mass 127 kg

Inertia 271.3 kg-m
2

Altitude 20 kft

Mach 3.5

Velocity 1100 m/s

Speed of sound 315 m/s

Dynamic pressure 4x10 5 N/m 2

Air density 0.65 kg/m
3

* Nominal &irframe. The airframe stability derivatives for

this nominal flight condition were extracted from the tabulated data

3 in [12] and are given in Table 3.2.

3 Table 3.2. Stability Derivatives

C 11.5

C 5.7n6
i C a  -0.1

C -0.3M 6

The values in Tables 3.1 and 3.2 were then applied to

* 3-4

I



It~qU-it1I' 3 3 .5- 3. 3 to yieli, the d !me ris ionalI stab IlIity

3 derivatives listed In Table 3.3.

I Table 3.3. Dimensional Stability Derivatives

N C12.0 (g's/deg)

N 6  1.0 (g's/deg)2

M Ot-0.91 (deg/sec 2/deg)

M 6  -2.74 (deg/sec /deg)

These coefficients yield the following transfer functions,

I using the equations of motion listed above and adding the

servomechanism dynamics

6(s) 77 [12] (3.9)
6 coi (5 s+77

e m(s -211(s+1.1894) (3.10)

e CO(s) (+7(+.97(-.77
em ()-211(s+1.1894) 

(.13 o 6(s) s(s+77)(s+1.5917)(5-0.5717) (.1

Ca(s) -- 39.3(s+5.3725) (.2
6 O(s) s+77)(s+1.5917)(s-0.5717) (.2

A n(s) 77(s+2.5278)(s-2.5278) (.3
6 com (s (s+77)(s+1.5917)(s-0.5717) (.3

T~x.qrt Tracing. Sytm The target tracking system will

be synthesized from two components; a simplified boresight

error resolver and an antenna mounted on a servomechanism.

U The boresight error resolver returns an error signal, 0, In

3response to the boresight error input 0 (angular position of

target relative to antenna boresight position ), with a

3 transfer function

I 3-5
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(3) _ 20.7 (131

Oe (5) s+5.26 t (3.]

The sign convention for e is as shown in Figure 3.2, where es

is the angular displacement of the antenna relative to the

missile centerline and 0T is the bearing to target.

I

*e Target LOS

I t b

i Figure 3.2. Tracking System Sign Conventions

The antenna servomechanism is attached to the antenna

pedestal such that it generates an angular displacement rate

of the antenna boresight es in response to an input signal w.

The transfer function for the servomechanism is

bs(s) 94 [12] (3.15)3 W(s) s+104 1

This combined servomotor/resolver system can be represented as

Ishown in Figure 3.3.

I
I
i 3-6
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T

W(s) 94 -1 es (s) -+ e(S) 20.7 0(5)'14- s6o M ~ - '1I s,5.26_/j c )

I Figure 3.3. Target Tracking System

I CopldJ S . When the antenna is coupled to the

airframe the total integrated system looks as in Figure 3.4.

O(s) (s)- es)

s+ 2. 6

+ (5)

er(s)

1-2.74(s+1.18 4) e (s)

S s77 I()(s+.5917)(s-U5717)

II 1 -0."51 (s+5."3725)li

ca(s)
1.0 2.0

S An (s)

Figure 3.4. Coupled System Block Diagram

I Note that the output of the error resolver has not yet been

fed into the antenna servomechanism. This will be done during

the design process.

Derivation of the additional transfer functions

associated with the coupled system yields

I
I 3-7
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Pt 3 _ 4368s+1.1834)

6 com(S) s(s+77)(s+1.5917)(s-0.5717)(s+5.26)
O(s) 20.7 (3.17)

IT(S) (s+5.26)

O(s) - -1945.8 (3.18)

W(s) s(s+104)(s+5.26)

T Time ay_ System with Dne Inputs

This section lists all the time-varying parameters,

parameter variations, and disturbance inputs to the system.

These effects are simulated in the time-varying model.

Missile. In reality, the missile does not operate In a

m constant deterministic environment and many of the physical

parameters of the system are not known accurately due to

component variation from missile to missile. A realistic

simulation of the missile mt'st include the effects of these

variations. To this end, time functions will be used to model

parameters which vary over the time of guided operation (8

seconds), some of the component properties will be perturbed,

I and disturbances will be added.

1=ime Varying. t. . In order to realistically

vary flight conditions with time, the assumption is made that

the missile has finished boosting, initiated the sustained

propulsion phase, and starts guidance at a 15kft altitude,

I climbing at a constant rate of 1000 feet per second. This

flight path is assumed based on a typical surface-to-air

missile launch, and the target altitude induced by this

3
* 3-8
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I profile is dependant upon actual time to intercept. The time

function for the missile altitude is then

h(t) = 15,000 + 1000t (feet) (3.19)

Given standard atmospheric conditions, this causes the air

density and local speed of sound to vary as (1:701

p(t) = 0.7626 - 0.0214t (kg/m 3  (3.20)

a(t) = 322.27 - 1.26t (m/s) (3.21)

I Missile velocity normally varies slightly as the propellant is

burned during the sustained phase, so the following velocity

time function is assumed basea on propulsion data from [12J

V(t) = 1000 + 80t - 8t 2  (m/s) (3.22)

Since the reference data tabulates aerodynamic coefficients as

a function of local Mach number, it is necessary to express

* this value as

M(t) = V(t)/a(t) = 1000 + 80t - 8t 2  (3.23)
322.27 - 1.26t

For ease of calculation, it is desired to express this

function as a simple polynomial in time only. This can be

accomplished by using a Taylor series expansion (which for the

case of ratios of polynomials is equivalent to carrying out

the division). The Taylor series expansion yields an infinite

order polynomial, which is normally truncated at the point

I where the desired accuracy is reached for the interval of

interest. An interval of eight seconds and an accuracy of 2%

are used for all of the Taylor series expansions developed in

I
I 3-9

I



m this s5ection (that is, when the highest order term contrlbutes

less than 2% to the value at eight seconds, it and all

following terms are ignored). Taylor series expansion yields

the Mach number time function

M(t) = 3.103 + 0.26t - 0.0238t (dimensionless) (3.24)

Based on the above values for density and velocity, dynamic

m pressure can be expressed as

q(t) = p(t) V(t) 2 /2

= (0.7626 - 0.0214t)(1000 + 80t - 8t2 ) 2/2 (3.25)

Inertia, mass, and stability derivatives were derived from the

3 tabulated data [12], where they are listed as function of Mach

number and time. Using equation 3.24, these were all

I converted to time functions, yielding

m(t) = 127 - 2t (kg) (3.26)

Acg(t) = 0.84 - 0.0008t (W) (3.27)

I(t) = 279.6 - 1.58t + 0.0027t 2 (kg-m2 ) (3.28)

C (t) = 11.30 - 0.0447t + 0.0409t 2  (3.29)

SC n(t) = 6.130 - 0.0447t + 0.0409t 2  (3.30)

C (t) = 0.0017 - 0.037t + 0.0038t 2  (3.31)

C m(t) = -0.329 + 0.0181t - 0.0017t 2  (3.32)

Using equations 3.5-3.8 for dimensional stability derivatives,

equations 3.25-3.32 are used to generate the following

equations for dimensionsal stability derivatives as functions

I
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I of time

N (t) = 1.871 + 0.202t - 0.0262t 2+ 0.0008t 3  (3.33)
2 3

N6 (t) = 1.016 + 0.076t - 0.0161t - 0.0004t (3.34)

MC (t) = +0.0144 - 0.3109t - O.0111t 2 + 0.0085t 3  (3.35)

M6 (t) = -2.78 - 0.230t + 0.044t 2  
- 0.001t 3  (3.36)

Component V. Many other parameters of the

I system vary from missile to missile, but not with time. In

composing these variations, the author's best estimate was

used.

I The time constant (Trf) of the fin servomechanism can

vary. The perturbed servomechanism transfer function can be

I written as

I 6(s) - l/T f = 77+A (3.37)

6com(S) s + l/Tf s + (77+&)

where A is normally distributed with zero mean and a variance

2 determined by manufacturing quality control. A variance

I value of 4 was assumed. Standard statistical notation denotes

this as A = N(0,4). Similarly, it was assumed that the body

rate sensor suffers from a variance of 1% in gain, so it sees

a variation of N(O,.O1) from its normal gain of 1. Also, it

was assumed the normal acceleration sensor sees a variation of

I N(0,.O1) from its normal gain of 1.

Disturbances. There are disturbances in the form of

turbulence and power supply noise entering the missile

I airframe system. Reference [91 presents data describing

turbulence disturbances, and from this reference atmospheric

I
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I turbuience can !e modeled as tane:m w.n1 guits :t ' * '-Y ,

where wg= N(0,3) (m/sec). Also from [9], it can be seen that

wind gusts can be modeled as affecting the airframe as a

change in angle of incidence. Specifically, the wind gust

can be modeled as an additional component to , namely ag,

with the transfer function

- (3.38)

Wg(s) -TvT(s + lI/T )

where T m is a time constant dependant on the airframe. It is

assumed for this missile that T m is very large, such that the

above transfer function can be approximated as

U- '9 (s5-) 1 -(3.39)
g (s)

or

v (s)
a~s- (3.40)

Using the nominal velocity as an approximation, the turbulence

disturbance is modeled as ag = N(0,0.003).

Another disturbance entering the missile system is power

supply noise (C). This disturbance appears as a random input

to the fin servomotor, entering at the same point as 6co m .

Such noises can be characterized as having zero mean with some

variance o2 dependent on the magnitude of the noise in the

3system. This noise also has distinct frequency
characteristics, and can be represented as a random signal 3 =

N(0,a 2 ) being passed thru a filter with the same frequency

1
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characteristics as the noise. For instance, if the noise lies

within the frequency range (wI W2], it can be represented as

KfI3

( = s(s + W)(S + W 2 ) (3.41)

where Kf is set to achieve unity gain over the frequency range

of interest. For the power supply noise, the following values

I are assumed

13 = N(0,0.05) (3.42)

Wl = W2 = 400 sec (3.43)

Target T Sye. The target tracking system,

3 being composed of electronic parts and not particularly

dependent upon the flight conditions for its operating

3 parameters, does not suffer any of the time-varying parameter

changes that the missile does. It does see component

variations and disturbances similar to the missile, however,

and these must be addressed.

C Vrto. The resolver can be modeled

as consisting of a time constant rr and a gain Kr'K

0(s) r (3.44)
e(S) s + 1 r

3 and is subject to variations in both of these values. Kr is

assumed to vary as N(0,2) and I/T r as N(0,0.5). The[r
servomotor can be modeled in this fashion also. For the

servomotor, it is assumed that K. varies as N(0,4) and i/T s as

I N(0,4) (independently). In addition, it was assumed that the

[
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I sensors which detect the rate and position oE the antenna

suffer variances of 1% in accuracy, so each of these sees a

variation of N(0,0.01) from its normal gain of 1.

Disturbances. The electrical components of the

target tracking system are subjected to the same power supply

noise as the fin servomotor described above. Thus, this same

noise will be injected into the angle error resolver and the

antenna servomotor.

Finally, target data is corrupted by target glint. Glint

enters the system as a random pulse-to-pulse variation in

target position. The glint was assumed to be distributed as

N(0,25) (meters). This can be converted to an angular noise

input dependent on target range (RT) by using the small

3 angle approximation and converting radians to degrees to get

t = N(0,1500/RT) (3.45)

All of the above noise and disturbance inputs are modeled in

I the simulation. To do this, it is necessary to model how

these Inputs enter the system in state space form. This is

I done in Chapter IV.

31I
U
I
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I
jV St. ic DescripotionI

The state space representation of the airframe is derived

from the equations of motion. Te standard state space

I nomenclature [6:2]

3 x = A x + B u (4.1)

y =C x + D u (4.2)

I will be used as a base for building the state space

3 representations used herein. The systems described will grow

too large to maintain this simple notation and preserve

3 clarity, so subscripts and additional vectors will be added as

needed. The development of this representation will parallel

I the Laplace domain development in Chapter III as much as

i possible.

MisieAirframe

Using the standard nomenclature above, the missile

3 airframe is represented by

[6] (fin deflection, deg)

IX = 6 (body rate, deg/sec) (4.3)

aeaI(heading angle, deg

a (angle of attack, deg)

i u 6con (fin deflection command, deg) (4.4)

An ] (normal acceleration, g's) (4.5)

I
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i Using these state, input, and output vectors, the

correspondlng A, B, C, and D matrices from the transfer

functions in Chapter III arei
[-77 0 0 0

A -2.74 0 0 0.91 (4.6)0 1 0 0
-0.51 1 0 -1.02j

B 0
B =0 (4.7)I 0

* 1= [ 0 02 (4.8)

D D= [1 (49)I

This system is controllable [6:531, but the 6m state is

not observable [6:66].

I TAr9Lt. Tracing g

For the target tracking system, the vectors are

1(boresight error signal, deg)
x = (antenna rate, deg/sec) (4.10)e 3(antenna angle measured from

missile centerline, deg)

(bearing to target, deg) (.1[471 (antenna servo Input, deg/sec)

I
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I u~ 4 L: (412)

3 This yields

[-5.26 0 -20.7]3 = [0 -104 0 (4.13)

0 1 0

B = 0 9 (4.14)

I
* c= 0 (4 i5)

0* [Oo!]
D = 0 (4.16)

Combining the tracker with the airframe, and making the

substitution Oe=T-em-es (See Figure 3.4) yields the following

state-space representation of the combined system, hereafter

referred to as the plant. At this time, it is convenient to

split the input vector into two separate vectors, one of which

contains those inputs which can be manipulated by the

3 designer, 6 con and w, the other containing the input which is

an external signal, OT. These input vectors will hereafter be

3 designated u and w, respectively. Note the additional

subscripts: p to denote the plant, 11 to denote those matrices

corresponding to the input up, and 12 to denote those matrices

I
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czrrespondrig to the input w . T hu s, the plant is repertei

* by

x =A x + B u + B w (4.17)

yp p p p11 p p 1 2  p

3 where

m
9tm (4.19)

I

u com (4.20)

I 
W I

vp = T (4.21)

m
= nr (4.22)

YP

* S "

3 -77 0 0 0 0 0 0
-2.74 0 0 0.91 0 0 0

0 1 0 0 0 0 0
A i -0.51 1 0 -1.02 0 0 0 (4.23)I 0 0 -20.7 0 -5.26 0 -20.7

0 0 0 0 0 -104 0
0 0 0 0 0 1 0

I
I
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I
77 0

o 0
0 0

B p I  0 0 (4.24)
P'1 0 0

0 094

0 0

0
0

B p 0 (4.25)
p12 20.7

0i 0

0 1 0 0 0 0 0]
I1 0 0 2 0 00

C 0 00010 j (4.26)

o 00 0o
D [0 0] (4.27)

0 00 oo
0

Dp1 2 = 0 (4.28)
0

This is the 'clean' version of the missile model and will

be used for the classical design approach.

Time Varying SyLta banLceInu

In addition to the above system representation, the

realistic system is subject to time-variant changes in

I environmental conditions, component variations, and noise

I
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I ~nputs as described in Chapter Ill.

I i sturbances. The noise Inputs are appended to the clean

state space representation such that

Xp = A p + B up + Bp1 2 Wp + B p (4.29)

p p p p11 p p12 p p2 (4.30)

where equations 4.17-4.22 still apply and

0 0 1
1 0 0
0 0 0

B = 1 0 0 (4.31)
p2 1 0

0 0 1

I0 0 0

0 0 0 (4.32)D p2 0 0 0

0 0 0

I
r (0,0.003) (turbulence)

i= N(0,15 0 0/RT) (target glint) (4.33)
N(0,0.05) J (power supply noise)

[N(0,0.1) (body rate gyro noise)
N(0,0.05) (accelerometer noise)

S =  0 (no measurement noise) (4.34)
N(0,.i) (rate gyro noise)

N(O,.05) (potentiometer noise)

Two items in the above deserve note. First, notice that

I target glint has a variance that is a function of range.

This indicates that this signal is non-stationary, which

creates special problems. This is another time-varying

parameter. Secondly, notice that 7's third element is

zero. This is because 0 is an electrical signal directly

I
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available for measurement, and has no measurement noise

corruption associated with it.

In addition to these random noise inputs, the real system

is also subjected to a discrete deterministic (but unknown)

disturbance, specifically loss of target data due to ECM.

While quali.tative statements can usually be made about factors

such as this, it cannot be treated as a known quantity which

can be compensated for.

Time-varving pard * eA an CQm et Vs. Next,

parameter variations must be considered. These will enter

into the real system as variations in missile velicity, mass,

inertia, atmospheric conditions, center of gravity location,

servomechanism time constants, component gains, and

high-frequency unmodeled dynamics. These effects will all be

simulated, except the high-frequency unmodeled dynamics. This

I exception is due solely to the desire to limit the scope of

this investigation. This variation of parameters, both

time-varying and invariant, will be modeled by making the A,

B, and C matrices functions of time and adding the component

variations as follows

I77+A 1 0 0 0 0 0 0
IM 0 0 -M 01 0 0 0

0 1 0 0 0 0 0
Ap N -61/V 1 0 -Not/v 0 0 0 (4.35)

0 0 -20.7+A 2  0 -5.26+43 0 -20.7+A 2

0 0 0 0 0 -104+A 5 0

L 0 0 0 0 0 1 0

I
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I
77 0A1

0 0
0 0

B = 0 0 (4.36)

0 0

0 94+A 4

0 0

I 0
I 0

0

B -p 2  0 (4.37)

20.7+A 2

0

L 0

0 1+A 7  0 0 0 0 0

N6 ( 1+A 6) 0 0 N (1+A ) 0 0 0

C 0 0 0 0 1 0 0 (4.38)

P 0  0 0 0 0 1+A 8  0

0 0 0 0 0 0 1+A9

where N0, N6 , M, M16, and V vary as defined in Chapter III and

I the &'s are defined as

"(0,4)
N(0,2)
N(0,0.5)
N(0,4)

A = N(0,4) (4.39)
N(0,0.01)
N(0,0.01)
N(0,O.01)
.N(0,0.01)

Note that the A's are preset and do not vary with time.

I
~4-8

I



UWith the problem now in the proper form, the design

i effort is initiated in Chapter V.

i
i
i
i
I

I
i
i

I
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In this section, the objective is to derive a missile

control system based on classical design principles. Using

the root locus, bode plot, and step response analysis tools, a

controller is designed which stabilizes the missile, provides

good tracking loop performance for the target tracker, and

guides the missile to the target location using standard

I proportional navigation techniques.

* The standard methodology for this type of design follows

the algorithm: (1) design an autopilot which stabilizes the

missile airframe and makes it responsive to command inputs,

(2) design a feedback controller which provides for accurate

I tracking of the target line-of-sight, both stand-alone and in

the presence of missile maneuvers, and (3) develop a guidance

law which guides the missile to the target in the desired

manner. These three tasks-are traditionally taken as separate

problems, and will be treated as such in this design.

I
The design objective for the autopilot is to obtain a

stabilized body rate command system. This design goal is

I driven primarily by the guidance scheme used for proportional

navigation described later in this section. Autopilot design

for this airframe is complicated by two factors. First, the

missile is open-loop statically unstable. This in itself is

not a particularly difficult problem, which can usually be

I
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U surmounted by 6imple body rate and normal acceleration

3 feedback. It is complicated in this design by nonminimum

phase dynamic response of the missile normal acceleration,

caused by tail-mounting the fins. Initially, a positive fin

deflection, as defined in Chapter III, will induce normal

acceleration in the positive direction. However, the positive

I fin deflection causes a negative angle-of-incidence rate,

which generates a negative normal force stronger than the

positive normal force due to fin deflection, and a negative

normal force is the final result, after some time lag

dependent upon the specific airframe dynamics.

To meet the design goal it is necessary to design

feedback loops using sensor outputs. The airframe dynamics

3 and sensors are described in Chapter III. The two outputs

available for stabilizing the airframe are body rate and

I normal acceleration. The design will be accomplished using

sequential loop closures. First, the body rate loop will be

examined and closed, followed by the normal acceleration loop.

3 Figure 5.1 depicts the scheme used to accomplish the design

goal.I

I Eqns of motion A

I
Figure 5.1. Body Rate and Normal Acceleration Feedback

I
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I The transfer functions f, tes two z. ps ,jer ived Er~r

the equations of motion in Chapter III) are

A n___s 77(s+2.5278)(s-2.5278)

I corn(s) (s+77)(s+1.59l7)(s-0.5717) (3.13)

em (S)-211(s4-1.1894)
6 co(s) (s+77)(s+l.5917)(s-0.5717) (3.10)

The root loci for these functions are shown in Figures 5.2 and

5.3, respectively. Note that the scale of these figures

precludes inclusion of the locus for the pole at s =-77.

I This was done to focus on the action of the critical poles

3 near the origin. Note also that these loci are for negative

values of the K's as defined in Figure 5.1.

K SI'S
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-2.5.
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-7.5

i -II ,I
-1 A is

Figure 5.3. Root Locus for Body Rate Feedback

(Negative Gain)I
while maintaining good damping. To make the autopilot a body

rate command system, Ke must be driven as high as possible
m

(this is known as increasing the loop gain). It is evident

from inspection of the root loci that first the gain of the

body rate loop must be increased to move the unstable pole

into the left-half plane. Also, it is desirable to move the

pole at -1.5917 until it is left of the An zero at -2.5278 in

order to modify the shape of the An root locus. A negative

gain of magnitude 1 or greater will accomplish this. A body

rate gain of -2 changes the normal acceleration loop transfer

function to

An(s) 77(s+2.5278)(s-2.5278)
6 com(5) - (s+71)(s+5.92)(s+1.03) (5.1)

With the poles so placed, the root locus for the normal

l acceleration feedback loop now looks as in Figure 5.4.
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IFigure 5.4. Root Locus for Normal Acceleration Feedback,

with K6 = -2. (Negative Gain)

This locus is much better than the previous one from a design

Uviewpoint. Evaluation reveals that a negative gain in this

loop is desired to decrease response time. The leftmost pole

shown in Figure 5.4 Joins rapidly with the servomotor pole at

s = -71 and this pair then moves toward the right half-plane

zero as the gain is increased. Thus, to preserve good

Idamping, a maximum gain of -0.7 can be allowed. It is desired

to keep the missile as stable as possible, so a value of -0.14

will be used. This is primarily to keep the gain and phase

3margins 17:430-4331 high, which provides some robustness to
modeling uncertainties. The body-rate open-loop transfer

3function is given by
0r(s)

. . = 422(s+1.1894) (5.2)
(S) s3+67.24s 2+77.63s-1.1863

icom
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I The Bode phase and magnitude plots for this transter

function are shown in Figure 5.5, from which it can be seen

that these gains for the airframe control loop yield a gain

margin of greater than 40 dB and a phase margin of 84 degrees.

Further examination reveals that increasing the body rate

gain buys very little movement of the rightmost pole, while

bringing the other two closer together, so that a lower

acceleration gain is allowed to maintain damping and preserve

good gain and phase margins. Therefore, a body rate gain of

-2 and an acceleration gain of -0.14 provide about the best

I performance possible.

The step response due to a body rate command is shown in

Figure 5.6. This figure shows that the design objective of a

body rate command system is met very well.

T
The design goals for the tracker system are: (1) minimize

target track error, (2) minimize response time, and (3)

minimize transient behavior. For this design effort, the

I tracker will be considered detached from the missile. Once

again, successive loop closures will be used to consider

feeding back both antenna rate and position. The antenna rate

loop will be closed first, followed by the position loop. The

scheme used to accomplish this design goal is depicted in

I Figure 5.7.

I
I
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+ e -- + 94 s 19

I Figure 5.7. Tracker Feedback Loops

1 The step response of the 'unmodified' tracker (with K =1

simply to close the loop and K6 =0) is shown in Figure 5.8.
5

This response shows the tracker to be slightly overdamped, but

otherwise a fairly good design to begin with. As described in

Chapter I1I, all three states of this component are directly

available for measurement. However, only the 0 and 9S

measurements are needed to facilitate the design, since the

boresight error resolver forms a natural unity feedback of es,

I as is apparent in Figure 5.7. The transfer functions for the

loops of interest are (with K6 = 0 and K = 1)

es(s) -1945.8 (5.3)IIOT(S) s(s+104)(s+5.26)

I s(s) 94 (5.4)

(s) (s+104)

I The root loci for these transfer functions are shown in

Figures 5.9 and 5.10, respectively. Looking at these root

loci, the best course of action is not obvious. It is

desirable to make K as high as possible, to increase the loop

gain, but obviously this will drive the poles v'nstable in
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Figure 5.9. Root Locus for K s Gain(e Feedback)
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m short order. However, increasing the gain on K% will move

the 'center of gravity' of the loci, with favorable results.
mThis can be seen in the root locus for K w ith Kb =10. This

I S~g

gain moves the servomotor pole to -1044, and the new K root
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locus, shown in Figure 5.11, is much more tractable from a

design point of view.

iIa

I Si.

kal S

Figure 5.11. Root Locus for K with K6 = 10.Ie
Now K can be increased to a value of 15, which provides high

loop gain and yet maintains good damping. The new step

response of the system, shown in Figure 5.12, displays this

behavior. Examination of the Bode plot for the open-loop

transfer function

s ) 29187

OT(S) s(s+2.56)(s+1044) (5.5)

as shown in Figure 5.13, reveals that the gain margin for this

design is 39 dB, and the phase margin is 27 degrees.

Increasing Kis further would enhance the time response, but

would degrade the stability margins, so no further

modification will be made. The resultant closed-loop system

is shown in Figure 5.14.
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I

20 710

s4.5.26

!~ Oe (s),l-OT ~ 4 (5)e)

e9 M (s)

e )m + f s

_ CO s7 (s+l.5917)(S-0.5717)

1.51(s4.5.3725)
sa(s)

-SA. Cs)

I Figure 5.14. Closed-Loop System Block Diagram

I At this point, the design would normally be finished.

Unfortunately, the step response of the coupled system (Figure

3 5.15) to a body rate step command shows that missile maneuvers

are adversely affecting the tracking accuracy. This is most

obvious in the magnitude of *, the filtered boresight error.

Also notice the difference between s and 6., which ideally

should be exactly opposite for perfect tracking, since the

target is not moving. This effect may be minimized by feeding

the airframe body rate to the antenna rate command signal, w.

5
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i The corresponding block diagram for this scheme is 3hown in

Figure 5.16, where K is the gain for the body rate feedback

to o, which is to be determined.

I ____________+io____ s+ + 10,

O (s) + (ss+5.26 -:

OT T(s )  Oiq ------- )

m (s)7js).(9 )| 5

-I6 (s s737 HiiU .91 )(s0.5717)I coo.~ 1
[-0. 51( s+5. 3725)]

' M (s em (5

U
102.0s+.84

I + 01s)

I Figure 5.16. Closed Loop System Block Diagram

m Repeated step response evaluation reveals that a gain of 10

for K. largely cancels out the transient effect, as shown in

Figure 5.17.

IGuidance L" Cutatin

m Traditional guidance techniques for achieving
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I proportional navigation [2:2-14] indicate that the guidance

3 computer must command a normal acceleration of the airframe

proportional to the LOS rate of the target relative to the

missile. The guidance law is then of the form

A nco m = (K )(LOS Rate) (5.6)

However, A n is related to the missile bearing angle r by

A n IVI (5.7)I n

and r is given by

I- (5.8)

If a is assumed small, then the guidance law becomes

Scom = (K )(LOS Rate)/IVI (5.9)

Thus, the origin of the design goals for the airframe and

tracker are made obvious. The constant of proportionality Kg

for this guidance should also be a function of closing rate,

so the above relation takes the form

a mcom (Kg) lRTI(LOS Rate)/IVI (5.10)

This results in a non-linear problem, if both LOS rate and

closing rate vary, as they do in a realistic encounter.

Selection of the constant of proportionality is highly

3 dependent upon expected engagement conditions. A lower

guidance gain constant results in pursuit of faster targets,

and a high one makes the missile more responsive to target

maneuvers. Effectively, the guidance constant determines how

I
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i 1ong it will take the missile to correct its course to the new

predicted intercept heading. For this missile, a value of

K = 2.75 was chosen based on several flyout scenarios against

I viable targets. A smaller value makes the missile fly a

pursuit guidance on moderately fast (400 m/s) targets, a

larger one causes it to react too violently to nominal (6g)

target maneuvers. The nominal value of jVj = 1100 m/s was

used in the above guidance law derivation. Also, assuming

that the tracker is accurately tracking the target, the LOS

rate is given by

LOS rate = + (5.1)m

Thus, the guidance law becomes

b =mcom 2 .751RT1(6 s + 6 )/1100

mcom m

= O.00 251RTi(es + 6m) (5.12)

During the flyout runs, the above guidance law was found

to generate very large Initial accelerations, due to the

assumption of small a. Therefore, an additional factor of .3a

was added to the guidance law, to limit the large normal

accelerations. From Chapter III,

6as) - 0(s) - r'(s) (3.3)

which (using proper unit conversions) converts to

I AIs)0(s) 2 n (5.13)

yielding the guidance law

I
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m s m J

- (0.3)e (s) - (0.5)A (s) (5.14)m n

Since the guidance problem is highly non-linear, the author

has decided to exclude this portion of the problem from the

optimal design requirements, and will instead use the same

guidance law on each design. The above derived gains,

feedbacks, and guidance law computations can be represented by

a single feedback matrix K to be used in the control law

up K yp (5.15)

such that the closed-loop missile system system can be

3 represented as

x p = Acl xP + Bcl w (5.16)

yp = Ccl xP + Dcl w (5.17)

i where

A ci =Ap - BplIKCp (5.18)

B cl p12 (5.19)

I cl =Cp (5.20)

3 Dci =Dp 1 2  (5.21)

I where kp, Bplj, Bp 1 2 1 Cp, DpII, Dp1 2 , Xp, up, and yp are as

given in Chapter IV (Equations 4.13-4.22), and K is given by

[1.7+0.002 5' -0.29 0 O.0025*A 01 5.2

1 0 10 -15 10 0]

This representation facilitates implementation in the digital
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I siLmulationl, which is designed to handle the state-space

I representation of the missile system.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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~ 2 CotolLSytei

The H2 design objective is to find the feedback control

I law

u(s) = K(s) y(s) (6.1)

such that the 2-norm of the closed loop transfer function

matrix z(s)/w(s) is minimized, where w(s) are the system

inputs (including commands, disturbances, and noise) and z(s)

is an error signal. Simply stated, it is desired to minimize

system error response to all signals entering the system.

The methodology for solving this problem is

well-established in control theory literature, so a brief

overview will be presented here. For a more extensive

treatment, see Doyle et. al. 131.

TQL St.atI S. QL 21. 11 2 D

The development presented in this section was taken from

Doyle et. al. (31. The standard block diagram representation

of the small gain problem is shown in Figure 6.1.

Figure 6.1. Standard Block Diagram

In Figure 6.1, w is the vector containing all system inputs, z

Iis the vector containing error signals to be controlled, u is
the control input vector, and y is the vector of measured

* 6-1

I



system errors. G is the open-loop plant and K is the

controller to be designed. The resultant closed-loop matrix

of transfer functions from w to z is denoted T

r Definition. The objective of H2 design is to find

K such that Tzw is internally stabilized and the 2-norm of

Tzw , denoted IT zwI 2, is minimized. The 2-norm of Tzw is

I defined as

JITzw 112 OD trace Tzw(jw) * T zw(j ) ] d] (6.2)

I where the superscript * denotes the complex conjugate

I transpose.

This concept can be visualized easily in the single-input -

single-output (SISO) case, where the 2-norm is proportional to

the area under the Bode plot of the closed-loop transfer

I function.

Visualization in the multi-input multi-output (MIMO) case

is more difficult, but the principle is the same. In the MIMO

case, the 2-norm is proportional to the sum of the areas under

all of the singular value plots. Singular values are used to

I extend the concept of bode magnitude plots to the MIMO case.

i For an extensive treatment of the properties of the singular

value plot, see AFWAL TR-85-3102 [8).

Problem Reauirements and sajing. In state space form, G

can be represented as

Ix = A x + B1 w + B2 u (6.3)

z = C x + DI1 w + D12 u (6.4)
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I y zI I w

Y : 2  x D 21 w + 22 . )

To solve the H2 problem via existing theory [33, the following

conditions must be satisfied;

1) D 1 0 (6.6)

1 2) D22 1 0 (6.7)

3) (a) DI2 T  D 2 1 (6.8)
T

(b) D2 1 D2 1  =1 (6.9)

4) (A,19I ) stabilizable & (CIA) detectable

5) (A,B 2 ) stabilizable & (C2 ,A) detectable

Condition I requires that the vector of error signals z

receives no direct feedforward from the disturbances w. If

this requirement is violated, ITzwI 2 is equal to w for any

K(s) developed.

Condition 2 requires that the vector of measured errors

receive no direct feedforward of the control inputs u. This

condition can actually be relaxed if required [5] & (11], but

3this is not necessary for this problem.
Condition 3a requires that z receives direct feedforward

Iof each element of u, and Condition 3b requires that each

3element of y receives direct feedforward of some element of w.

In summary, each mtasured output must be directly

m contaminated by some disturbance but not by any control inputs

(as will be the case in any well-modeled system) and the error

I signal z must be affected by each control input directly

m (every control input must be controlled) but not directly by

*6-3
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3 Inputs directly would yield an Infinite 2-norm since they

can't be affected).

I Conditions 3a and 3b also require that the input u and

the output y be scaled. This scaling is accomplished via a

Cholesky decomposition [3], which yields unique upper

3 triangular matrices that satisfy

S S= D (6.10)Su u 1 21

-l -T D 21D 21T (6.11)3Sy y 2 1 21.

where the superscript -1 indicates inverse and the superscript

-T indicates transpose of the inverse. The scaling is

appended to the original plant G as shown in Figure 6.2, where

the superscript - denotes scaled values.

uI-

Iu K

3 Figure 6.2. Block Diagram of Plant with Scaling

3 The scaling will be considered part of the plant in

determining the controller, but will be considered part of the

controller after the solution is obtained. Appending the

scaling to the plant G results in a modification to the

original plant representation. These modifications can be

3 represented as follows, where the superscript - denotes the

n 6-4
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scaled matrices, which are given 3y

B =B S (6.12)

SC 2 = Sy C2 (6.13)

D12 = D12 S (6.14)

D21 = Sy D2 1  (6.15)

The problem is now in the form required for application of the

3 existing methods for derivation of the controller, as

described in Doyle et. al. [3].

3Solution. This method requires obtaining the real,
unique, symmetric solutions X2 and Y2 to the two uncoupled

I Riccati equations

1 T X2 + X22 1 F -X 2 G 1 X2 + H = 0 (6.16)

3 2T Y2 + Y2 F2 -Y 2 G 2 Y 2 + H 2  0 (6.17)

where

I T
SA1 A- 2 D1 2  C1  (6.18)

I a1 =B 2 B2 T  (6.19)

H = C C (.0I 1 1 1iT  T (6. 20)

C1 2 D12 ) C1  (6.21)

F 2 =A - B 121T 2 (6.22)

a2 = 2  C2  (6.23)

H 2 1 B T (6.24)

B 1 = B1 ( I -D 2 1  D2 1) (6.25)

I The optimal controller (denoted by the subscript cp) is then
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I given b

Acp = A - Kf C2 - B 2 Kc  (6.26)

Bcp = Kf (6.27)

Ccp = -Kc  (6.28)

Dcp = 0 (6.29)

3 where

Kc = 2  X 2 + D12  C 1  (6.30)

Kf =Y 2 c2  +B 1 D 2 1  (6.31)

I The problem now standing in the way of deriving a

controller is the conversion of the missile model into one

conforming to the standard problem.

The design objective is to derive a controller such that

the antenna will tr~ck the target and the missile can be

5 steered. This is a tracking problem and Francis [4] presents

a methodology to convert the tracking problem to the small

3 gain problem. That methodology will be employed here.

The Tracking Problem. To convert the tracking problem to

the small gain problem, it is necessary to convert the desire

I to accurately track the target and guide the missile into a

requirement to minimize some set of values. It is desired to

I minimize: (1) error between commanded and actual missile body

rate, (2) tran.ients in normal forces, (3) error between

I antenna boresight and target line-of-sight, (4) transients in

i antenna rates, and (5) control inputs. Expressing these

I 6-6
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desires in terms of the tracking problem presented in [41

yields

z = r-v] (6.32)
Pu

y = [r-v] (6.33)

where

3p = diagonal matrix of control weighting factors

r = reference signal desired to track

3v = controlled variables, which track reference signal

u = control inputs

3For the missile system these become
a m (missile body rate)

V An  (normal acceleration) (6.34)
0 (boresight error)

b 5 (antenna rate)s

0 s  (antenna position)

*m (missile body rate command)

0 (desire no acceleration transient)

r = 0 (desire no boresight error transient) (6.35)

0 (desire no antenna rate transient)

e (antenna position command)

u [ c (fin deflection comand) (6.36)
L (tracker command)1

In block diagram form, the system looks as shown in

3Figure 6.3.

1
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I
z z 2

r * -

I Figure 6.3. Converted System Block Diagram

I Conversion t Small Gain Ejble. It is desired to express

3 the above system in the form

x = A x + B1 w + B2 u (6.3)

z = Cl x + D1I w + D12 u (6.4)

y = C2 x + D21 w + D22 u (6.5)

3 where K is considered 'open' and v is a vector containing all

external inputs. The external inputs will be arranged asIr
W [ OT (6.37)

This yields, in terms of the system representation given in

3 Chapter IV,

A = A 
(6.38)

p

3 B1 = 1 0 Bp1 2 Bp 2 0 1 (6.39)

B2 = Bp11 (6.40)

C1 = [-% (6.41)

C2 = [-Cp (6.42)

D11 = [1 -Dp 12 -D p2 -1 (6.43)
I0 0 0 0
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D21 [I -Dp12 -DIp2 - 1 (

However, this set of matrices does not meet Condition 1 above.

Specifically, D1I is clearly not equal to a zero matrix. D22

3 actually is zero as Dp 1 1 is a zero matrix.

Addition o£ Weighting Functions. This problem can be

3 solved by adding weighting filters to the system disturbances

and to the variable z. The resultant system is of the form

I shown in Figure 6.4.

3 w2  w3

zi1

II

3 Figure 6.4. System with Weights

3 In this system, each of the weighting functions is

frequency dependent. When expressed in state space form, each

3 weighting function generates additional states, one for each

pole present in the transfer function describing it.

Therefore, cach weighting function has its own A, B, C, and D

matrices. Denoting the respective weighting function matrices

with the subscripts associated with the W's in Figure 6.4

3 yields the new set of matrices describing the total system

* 6-9
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i (with K open as before)

A P 0 [Bp 2 Bp2 ]C3  0 0

0 A1  0 0 0

3 A= 0 0 A 2  0 0 (6.48)

0 0 0 A 3  0

BzC p  BzC 1  -Bz[Dp1 2 Dp 2 ]C3  -BzC2 Az

0 [Bp 1 2 Bp 2 ]D 3  0

B 0 0

BI = 0 B2  0 (6.49)

0 0 B 3

Bz D1 -Bz Dp12 Dp 2 ]D 3  -BzD 2I
0

B2= 0 (6.50)

* 0

-B zD P1

[-D CP DzC -DzC 2  -Dz[D p 2 Dp 2 ]C 3  Z (651)

1 0~C 0X~ 0 00

C2 [ -CP C1  -C 2  -Dp 1 2 Dp2 IC3  0] (6.52)

ID11 [ DzDj -DZD 2  -D [ D p2D] D13 (6.53)

D12o = P 2 (]I

D21 = [D1  -D 2 E(Dp 1 2 Dp2 ID 3] (6.55)

I
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D22 = L1 (6.

Now, Condition I translates to Dr=0. Condition 3a is met

I (using scaling) as long as all the control input weights are

3 non-zero, and 3b is met as long as care is taken that D and

D 2 are chosen such that each signal in y receives some direct

3 feed-forward from at least one of the disturbances (0 T' -' or

I). In addition to satisfying Condition 1, the weighting

3 functions are a powerful design tool. They enable the

designer to shape the system response. This is accomplished

i by: (1) designing the filter on the incoming disturbances such

that the Bode plot of the filter looks like the Fourier

3 Transform of the incoming signal; and (2) designing the filter

i on the error signal z1 such that the desired portion of the

spectrum of the error is penalized.

3F r the D ist I . The purpose of

designing the disturbance input filters is to properly reflect

3 the frequency content of the incoming signals. The automated

state space solutions to the H 2 problem are constructed to

minimize the 2-norm of TzV. At this point, it is necessary to

3 remember that the transfer function of a system is equivalent

to the impulse response of the system. Therefore, minimizing

3 the 2-norm of TzV is equivalent to minimizing the error

response to an impulse input. In reality, the system will not

I see impulse inputs, so minimizing the 2-norm of Tzw as is puts

an unwanted requirement on the design. To express the true

i 6-11
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design goals , it is necessary to convert T to the true

system response desired.

As an example, consider the case of a command w which

I enters the system as a step input. The Fourier Transform of a

step function is l/jw. Plotted as magnitude (in dB) versus

frequency, the transform looks as shown in Figure 6.5.

Obviously, a step function has very low magnitude at high

frequency and large magnitude at low frequency. Now consider

3 a SISO plant P to which this command Is applied as shown in

Figure 6.6, where y is the response and z is the error to be

I minimized.

I w z

IT
Figure 6.6. SISO Plant Block Diagram

I Two cases will be examined, for comparison purposes.

Representing these as P1 and P2, let

P1(jo) = 1 (6.57)

P2(J() = 10 (6.58)JW+lO

U which yield the time responses shown in Figures 6.7 and 6.8,

respectively. These systems have time constants of 1 and 10,

respectively, and both have zero steady-state error.

3 Accordingly, the quality of these systems should be reflected

in the size of the 2-norm of Tzw. For plant P1,N T (jW) = z(Jw) =l-Pl(J )= J(.59

zw w(Jw) jW+l (6.59)

I
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I Takingi the 2-norm,

JITz 112 = [ + O trace j d(+- T
zw122r -0jW.+3 jW+l

I r -00 2*- 
-f trace [ 2 ] d >

H = 2- -tan 1 ()

O (6.60)

Similarly, for P2,
Iz 

( j o ) j_ _ _

w) - w(jw) = 1-P2(Jw) j 0 (6.61)

3 Taking the 2-norm,

2 O1

1-- 0 trace W d

-1 00+W 2T- I

I [ - 10 tan--(w / 10)] 2

I = 
(6.62)

Clearly, this computation does not yield a very good measure

of actual system performance for comparison purposes. Again,

this is because the T examined here is the error response to

an impulse input. The effect of adding a filter with

I frequency characteristics matching that of a step function

I 6-16
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S~ will now be examined.

The Fourier Transform of a step function is 1/jw. Adding

a filter with this frequency characteristic yields a new

i system as shown in Figure 6.9.

-1

iFigure 6.9. SISO Plant with Filter

I Now T for P1 looks like
zw

Tzw 13 1= _ I-j (6.63)TzI0) j 1+j 1 +j i02

i Computing the 2-norm as before,

I IIT I I2  trace 1a 112I- 1+W 2  1+1 2

I f+-_0 trace [ 1 1 dw

I

tn 1 ((6 .64)I 2

For P2,

T (jTW= 0 (JW) 1 (6.65)
017100+2
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Computing the 2-norm,

I f+_ -trac l0-jW 1 2Iz 2 2 2a -00 10[+W2 d+2

I00 2 trace dJ
2n -00 00+W 2

U -II n [~= tan-l( / 10)]

10

Clearly, this is a much better reflection of the true

p erformance of the systems in response to a step input. The

key is to tailor the disturbance filter to look like the

I I rct disturbance (or command) input. To get an even

better idea of how close the system is responding to the

desired, It is necessary to examine filtering of the error

signal.

E1t rng.L the Q Error Signal. Suppose, using the

plants above, that It is desired to penalize only the steady

state error of the system. Since the above system has no

steady state error, proper filtering of the error should

reflect this. If it is desired to penalize steady state error

only, then the gain of the filter should be high on the low

frequency end and low on the high frequency end. A filter
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Ih h tI'.,tt this desire is simply A -/';1e pnd i rv t'i

filter to the error output z yields the system shown in Figure

6.10.

I w 4 E-- Y- l l

6 P

Figure 6.10. SISO Plant with Filters On Input and Output

The transfer function Tzw for P1 is then given by

. ... 1 J_ I (1-W 2 )i -2jw (6 67)

zw j . +j- JW+1 (+26

and the 2-norm of T becomes

IITZ2 = f 1 +---+ trace [ (1-c}2)-2J * (-2-2J ]d]

1

2 . -00 (lJooW J+0 d

= W F ---- __ + . tan- ()]i 0 -

" L 2(w2+1) -Co

1

1 (6.68)
2

For P2, the transfer function becomes

I 1 J 1 (10-W 2 )-llJW (6.69)

zw(J() = ---- J(100+ 2' 2)(9

I
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a .and the 2-norm becomes

IITzwiI2 2 - _ 0 (l0O+W ) l++) 3

I
2 99- (-0-tan( /i0)+tan ()

= = 0.067 (6.70)

i Now the true nature of this process is revealed, as the norm

of P2 is very much smaller than that of Pl, due to the fact

that the error resultant from P2 has much less low frequency

content (faster response) than that for Pl. The principles of

m behavior demonstrated in this SISO example extend directly to

the MIMO problem, with the added concept of relative weights

between error signals.

SRelative WegtnL2 oM net o the ErrorL

Signal. In composing the problem, the ability to modify the

3 relative importance between the elements of the error signal z

allows the designer to tune the response to his desires when

some of the signals compete with each other. The most obvious

competition takes place between the control signal u and the

error signal z, as decreasing the penalty on u allows more

3 control to be used to decrease z.

In a MIMO system, the same competition can occur between

I elements of the error signal itself. An obvious case of this

3 6-20
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I occurs t- the desire is to penalize some tracking error and z

the same time penalize the rate of the subject response. it

is not possible to maintain a zero rate and still respond to

the command. The determination of the relative penalties is

almost always an iterative process. If the response is too

I slow, the position error is penalized more heavily. Likewise,

I if the response is too lightly damped, the rate is penalized

more heavily.

In this context, the flexibility of the weighting filters

shows its true potential. With the addition of the frequency

I dependent weights, not only can the designer set the relative

penalties on the different errors overall, he can also set

relative penalties between errors that vary over the entire

spectrum. In the case of the position versus rate errors,

this flexibility allows the designer to penalize the position

5 more at low to intermediate frequency, so that the steady

state error and rise time are reduced, and simultaneously

penalize the rate in some frequency range where the system is

exhibiting poor damping. This was the approach used In

developing the weights on the missile system.

The weighting function Wz can be represented as

Wz = Pz Wz (6.71)

where p is a diagonal matrix containing the relative weights

between the components of the error signal and Wz is a

5 normalized frequency dependent weighting function which

achieves unity gain at its maximum value. This is done to

3 separate the magnitude of the filtered signal from the shape

5 6-21
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n of the filter, facilitating ease of design. By making 5uch

3 a separation, It is possible to automate the calculation of

W whenever the weighting factors p or the shaping filters Wz z

are modified.

All of the concepts needed to begin the design have been

developed. It quickly becomes evident, however, that with the

* many design variables available (shape of input and output

weighting filters, relative weights between error signals and

i control inputs, etc.) that the design must be carried out in

some systematic fashion, or else the designer can be

overwhelmed by the many options available. An algorithm was

3 therefore developed to simplify this process.

Design Proce.r. The first step in the design process

5 is to break the tasking into manageable objectives. The

design task was therefore broken into three portions: (1)

i target tracking, (2) missile command following, and (3)

m disturbance filtering.

Target T. First, all input weighting filters

were set to identity. Next, all weights on the body rate and

normal acceleration error were set to zero, to focus on

i tracking the target only, and .he weighting on 6 was reduced

to a small magnitude.

At this point, it was found to be necessary to raise the

i penalty on fin deflection, 6, to the same magnitude as the

weight on the tracker command signal, w, because the missile

i was attempting to maneuver the whole missile body in order to

align the antenna with the target due to the low penalty on 6.

This is shown in Figure 6.11, where the input is a ramp of one
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I degree per 6econd in the target position input.

3 Successive iterations revealed that the weighting mix

that achieves the best target tracking available with this

I configuration was

0 0 0 0 0
0 0 0 0 0 (6.72)Pz 0 0 0.1 0 0

0 0 0 0.1 0
0 0 0 0 10000

0.1 0 0 (6.73)

S= 0 0.1

3 This yields the response shown in Figure 6.12 for a unit ramp

antenna position command input followed by a negative unity

step. From this figure, it can be seen that the transient

response of the tracker is underdamped, and a steady state

error of 25% is present on the ramp input. To overcome this

error and transient, it is necessary to introduce the

frequency-dependent weighting on both the input command w1 and

the output z.

To reflect the nature of the expected input commands to

antenna position, the filter W is modified (from the flat

spectrum unity gain used at the start) such that the weighting

on antenna position commands looks as shown in Figure 6.13,

simulating a step command over the frequency range of

interest. Also, the weighting on the antenna position error

I signal is modified to make it a low pass filter with a

i bandwidth of 40 radians per second, as shown in Figure 6.14.

The weighting filter on the antenna rate was modified to look

3 like a bandpass filter, as shown in Figure 6.15. In addition,
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the weightirg ;natrix on the error 5ignals was inodified, to

0 0 00 0
0 0 0 0 0 (6.74)

Pz 0 0 0.1 0 0
I0 1 0 0

00 0 0 1000

The response of the resultant controller is shown in Figure

6.16. This response is satisfactory. With the tracker

designed, the missile control system is the next subject of

3 interest.

e Control System. The above process was

applied to the missile command signals and errors. This

process required modifying the body rate command filter to

I look like a step function over the frequency range of

interest, as shown in Figure 6.17. The body rate error filter

was modified to look like a lowpass filter to penalize

steady-state error more heavily than high-frequency error, as

shown in Figure 6.18. In the same manner that antenna rate

3 error was bandpassed to reduce the antenna transient, the

normal acceleration error filter was converted to a bandpass

to achieve the same effect, as shown in Figure 6.19. The

weighting matrix on the error signals was modified to

r 5  0 0 0 0
0 0.1 0 0 0 (6.75)

Pz 0 0 0.1 0 0
|0 0 0 10 0

0 0 0 0 1000

These modifications yielded the response shown in Figure 6.20

3 for a missile body rate command of I degree per second. This

response is acceptable. Now that the design responds

correctly, it only remains to shape the disturbance inputs.
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SWeighting unction6 for th_ MiSsile System. The

disturbance weighting filters developed for the missile system

are described in Table 6.3.I
Table 6.3. Disturbance Input Weighting Filters

3 Disturbance Description
Filter

Body Rate Command -20 dB/decade above 0.1
rad/sec, low frequency gain
20 dB, to simulate a step
command at high frequency.

Normal Acceleration Flat at 0 dB over entire
Command spectrum. Normal acceleration

is used for damping only,

no command.

Boresight Error Same as Normal Acceleration
Command Command.

Antenna Rate Same as Normal Acceleration
Command Command.

Antenna Position -20 dB/decade above 0.01
Command rad/sec. Low frequency gain

58 dB,simulate step command.

Accelerometer High pass above 20 rad/sec,
Noise -40 dB at low frequency.

Rate Gyro High pass above 10 rad/sec,
Noise -40 dB at low frequency.

Potentiometer High pass above 40 rad/sec,3 Noise -40 dB at low frequency.

Turbulence High pass abcve 1 rad/sec,
-40 dB at low frequency.

Glint High pass above 50 rad/sec,
-40 dB at low frequency.

I Power Supply High pass above 400 rad/sec,
Noise -40 dB at low frequency.I

See Appendix A for the respective transfer functions, Bode

6
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ao:.J 6 state space repres o-t-til ns. Inciusion of t.se

weighting filter5 required further modification to the command

and error filters. These modifications are reflected in

I Table 6.4.

Table 6.4. Error Signal Weighting Filters

Error Signal Filter Description

Body Rate Lowpass below 1 rad/sec,
dropping off at -20 dB/decade

* _thereafter.

Normal Acceleration 0 dB over the range 30 to 100
rad/sec.

Boresight Error Lowpass below 0.01 rad/sec,
-20 dB/decade thereafter

Antenna Rate 0 dB over the range 10 to
Error 200 rad/sec.

I Antenna Position 0 dB out to 40 rad/sec
Error dropping off at -20 dS/decade

* Ithereafter.

Again, see Appendix A for a detailed description of the

3 filters described in Table 6.4.

The set of weights used in the final design is given by

400 0 0 0 0
0 0.1 0 0 0 (.6

0 0. 0 0
[0 0 0. 0 0 (6.76)

0 0 0 0 1000 J
This set of weights and filters yielded a compensator which

5 responds as shown in Figure 6.21.

i oz-P3 La= .y tS&ReDresentation.

Once the controller is obtained, it can be placed into

I
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I the original 3ystem, .o that the closed-loup system n

represented as shcwn in Figure 6.22, where (Acp Bcp 2cp

correspond to the designed compensator and (A B C I

correspond to the original system. Note that the D matrices

for the plant and the compensator have been omitted for

clarity, since they are all identically zero. T1 is the

3matrix which derives the error signals from the sensor values.

Creation of T 1 requires implementing the proportional

*navigation laws described in Chapter V.,
B 2 A

p

+ +1 J xp

I E

I C-

3A
Figure 6.22. Closed Loop System Block Diagram

For this case, T 1 is given by

r.-.I+.00 ,52R T  0.15u 0 .0021jic T  0

T = 0 -1 0 0 0 (6.77)
0 0 -1 0 0
0 0 0 -i 0
0 0.1 0.25

Since 6 and w are generated internally, the above system may be

I
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I :1.3I , ..

I XC =Ac Xcl + BC1 Uc1

wh= CcI x c + Dcl Ucl (6.79)

where

U 1 LX 1 (6 .80)

I I
* l (6.81)

I Ycl =y (6.82)

A TD A BpllCcp (6.83)
Tc = A +BTD B

cp3ci p cp cpT Il pI

B Bp1 2  B p2 0(6.84)

IBcT [BTD p1 2  BcpT 1Dp 2  BcpTI J

Co = [Cp DP1lBPiiCCp] (6.85)

Dcl= [Dp 2  Dp1 2  1] (6.86)

Thus, the closed loop system is derived directly from the open

I loop description and the designed compensator.

3CQmnensao order Redutin

Due to the nature of the Riccati equations (6.16 & 6.17),

the compensator obtained in the above procedure is of the same

3 order as the augmented plant; 23 states. When added to the

plant, the resulting closed-loop sy3tem has a total of 30

'I
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efficient matiner in PC-MATLAB. Due to array size limitations

and time step requirements, it was desired to reduce the

compensator to no more than thirteen states.

The first attempt at reduction was to perform a minimal

I realizat: , of the system, to eliminate any pole-zero

3cancellations. This was accomplished via the PC-MATLAB

function MINREAL, which allows the user to specify a tolerance

for pole-zero cancellations. For a tolerance of 0.01, two

states were removed. For a tolerance of 0.1, three states

I were removed, but a detrimental effect on system accuracy was

3 observed. Accuracy was evaluated by feeding a random signal,

a step command, and a ramp command to both the full order

compensator and the reduced order compensator, then examining

the output control signals. At this point, it became obvious

I that the minimal realization would not accomplish sufficient

order reduction without serious loss of accuracy, so model

order reduction via Hankel singular value elimination [10]

3 was attempted.

Using this method, the compensator was reduced to 11

states without seriously compromising efficiency. This was

sufficient to make simulation possible. Both the full order

compensator and the reduced order compensator are described in

5 Appendix C.

I
I
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The H design objective is to find the feedback

compensator K(s) such that the -norm of the closed loop

3 transfer function matrix z(s)/w(s) is minimized, where w(s)

and z(s) are as described in Chapter VI. The methodology for

3 solving this problem is a relatively new development, so a

more complete treatment will be given than in Chapter VI. FoL

I a complete treatment, see Doyle, et. al. [3].

I foI State Space Solutioa 2 the Proble

The development presented in this section was taken from

[3]. The standard block diagram representation of the small

3 gain problem is shown in Figure 7.1. Notice that the same

basic setup is used as for the H 2 theory.

,
3 u

I Figure 7.1. Standard Block Diagram

I As in Chapter VI, w is the vector containing all system

inputs, z is a vector of error signals to be controlled, u is

the control input vector, and y is the vector of measured

3 system errors. The resultant closed-loop matrix of transfer

functions from v to z is denoted Tzw.

3 D innitron. The objective of H design is to find

K such that T is internally stabilized and the m-norm of

7-1
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-li d e i o t e ofT T AI T jdeied T minimized. The iWnorm of T jszw

defined as

IITzwI, :sup CYmax [zw(J )] (7.1)

where

l max := maximum singular value (7.2)

The above is read, "the r-norm of T is defined as the

supremum over all frequencies of the maximum singular value of

5T ." This concept can again be visualized easily in the SISOTzw-

case, where the oD-norm is equal to the maximum value of the

Bode plot of the closed-loop transfer function. In the MIMO

3 case, substitute "maximum singular value plot" for "Bode plot"

in the above. Thus, the c-norm is a measure of the worst case

3 amplification (in the frequency domain) of the output z in

response to the input w, in contrast to the 2-norm being a

I measure of average amplification over the entire frequency

3 spectrum. For this reason, controller designs based on

optimizing the c-norm return controllers which make T zw(j)

3 have a maximum singular value plot which is flat, i.e. all

frequencies are amplified at the same level.

I Like the H2 design method, solution of the H problem

rests on solving two uncoupled Riccati equations. Unlike the

H2 methodology however, the H optimization problem yields a

3 set of Riccati equations whose solution is stabilizing only if

jTzwjO . 1. The reasons for this characteristic are very

3 complex, and outside the scope of this paper. For a detailed

explanation of this fact, see Doyle, et. al. [3). This

7-2
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3 scaling factor y.

Th& r Iteration. The level to which the mo-norm can be

3 reduced is limited. In other words, it cannot be reduced to

any arbitrary size desired. Therefore, there exists some

I optimal oc-norm obtainable for any given system, no matter what

I controller is used. Since the Riccati equations are designed

to return a compensator which reduces iTzwjjO to 1, it makes

3 sense that this would not be possible if the optimal value of

IjTzwIIO is greater than 1. In this case, the set of Riccati

I equations has no stabilizing solution. Additionally, it is

3 equally possible that the optimal value of JTzwNO is less than

1, in which case the compensator obtained via the Riccati

3 equations is not the optimal. Thus, a scaling factor r is

introduced. By a basic property of any norm, in particular

I the oo-norm,

I y Tzw (TzwH® 7. 2

3 where r is an arbitrary constant. Thus, to obtain a

compensator which achieves the optimal JTzwIQ, it is necessary

3 to divide the input or the output or a combination of the two

by a factor equal to the optimal Tzw . The optimal value of

I TzwjO , however, is not known beforehand. For this reason, it

1 is necessary to use an iterative approach.

To search for the optimal compensator, an artificial

scaling factor r must be added, producing a scaled input w and

scaled output z, such that

I

I



z = Z (7.5)

The block diagram of the resultant system is shown in Figure

7.2. Note that the problem has not really been changed, only

I the way in which it is perceived.

3w(- w G z z z

y

Figre 7.2. System with Scaled Inputs and Outputs

3 Now solving the Riccati equations for the system with w as the

input and z as the output will produce a compensator such that "

I IIT II, is equal to 1. The iteration comes about from the fact

that if r is picked too large, a less than optimal solution

will be obtained, and if - is too small, no stabilizing

3 solution will be obtained. Thus, it is possible to determine

upper and lower bounds on the optimal TzI0 which may be

3 narrowed as much as desired, but the optimal may never be

reached exactly.

I In addition to the necessity to perform this iteration on

r, there are other problem requirements and scalings needed

before the theory can be applied.

3 Probue Reauirements aM& aing. To solve the

problem the following conditions must be satisfied;

1 1) D = 0 (7.6)

3 2) D22= 0 (7.7)

7-4



3) a) D, 7

b) D 2 1  D21 1 (7.9)

3 4) (A,B 1 ) controllable & (CIA) observable

5) (A,B 2 ) stabilizable & (C 2 1 A) detectable

Note that these conditions are very similar to the conditions

3 for the H2 case, with the exception of Condition 4, which is a

stronger requirement than in the H2 problem. Also, both

Conditions 1 and 2 may be removed when necessary (5] & (11].

3 Removing Condition 1, however, complicates the problem, and

Condition 2 is trivially satisfied for the problem studied

3 here. As described in Chapter VI, the modified system used is

controllable and observable, so no additional modifications

I are necessary to meet this requirement. Condition 1 is

satisfied in Chapter VI by introducing weights on the inputs

and outputs. Exactly the same weights as used in Chapter VI

3 are used here, so no further comment on these weightings is

warranted.

3 As in the H2 problem, Conditions 3a and 3b require that

the input u and the output y be scaled. This scaling is

accomplished exactly as before, via a Cholesky decomposition,

3 which yields unique upper triangular matrices that satisfy

S S -- D 2T D1 (7.10)

-3 12 1 2

- S-T I 1 '21T (7.11)Sy y D2 1 T

The scaling is appended to the original plant G as before,

1 7-5

I



wh ich t>iett r with the - scal i, results i i 1,rIt w' I

looks as shown in Figure 7.3.

u y

u y

Figure 7.3. System with Scaled Inputs and Outputs

With these scalings all in place, the new system becomes

= A x + B1 w + B2 u (7.12)

3 z = Cl x + D12 u (7.13)

y = C2 x + D21 w (7.14)

I where

3 1  1 B1 (7.15)
1 =

C1 = 1 C (7.16)

B =B2 Su (7.17)

C = Sy C2  (7.18)

1
S D12 Su (7.19)

D 1 S D (7.20)
21 y Y 21

Note that D11 and D22 have been excluded, as they are

3 identically zero to meet Conditions 1 and 2 above. The

problem is now in the form required for application of the

I
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I e etLod iescribed by DoyC e t. i 3.

3 I" ut 1.n, This method requires obtaining the real,

unique, symmetric solutions X and Y to two uncoupled Riccati

equations

F1  X + X F -X G X + H = 0 (7.21)
H1 = 1 vi 1 c721

T
F 2 Y= +IY F 2 -Ye G2 Y +H 2 =0 (7.22)

I where

1 -2 C12 (7.23)

G 2 T B 2 - BI T B (7.28)

TH 2= B1 (7.29)

I ~T

1 = ( 1 - D )1 (7.3)

SNote that the above Riccati equations are not the same as in

the H2 problem. In addition to the extra scaling on B1 andI C, the quadratic terms G (with appropriate subscripts) have

an extra term in them. This extra term is the limiting factor

which makes the H problem inherently more difficult than the

H 2 problem. For more detail, see [31 and (4].

The optimal controller for the H problem is then given byI ~ ~ T ~ -

Acp = A - Kf 2 B2 Kc + Y .OA ( l - D12 K ) (7.33)

Bcp= Kf (7.32)

I 7-7
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D = 0 (7.34)

where
T ~ T ~-

Kc=(B X + D C I Y X (7.35)

C2 00 12 1 )( - CC OD

Kf + C2  B1 D21 (7.36)

I There are three additional conditions which must be met for

the solutions to the above Riccati equations to be stabilizing

controllers for the system:

3 1) X > 0 (7.37)

2) Y OD 0 (7.38)

3) P(X Y ) 1 (7.39)

where p denotes the spectral radius, defined as

P(X 0Y O:= max ( abs ( X1 '2 (X Y ))] (7.40)

where X denotes eigenvalue. Equation 7.39 guarantees that the

3 inverse of (I - X Y ) exists, as required for equation (7.35)

above.

I
3 As mentioned previously, the identical problem set-up

used for the H2 problem will be used for the HD problem.

I The H solution was obtained by taking the problem set-up

as described in Chapter VI and iterating values of Y until an

acceptable solution was obtained. r was reduced to a value of

1 500 which yielded solutions X and Y which satisfied the

7-8
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;;-~r t tInrs bove. The spectral r adius of the solution

Qbtalned Is 0.9254. Although somewhat less than the optimal

value of 1, this solution is very close to optimal, since

I testing r = 499 yields a spectral radius greater than 1 (the

spectral radius increases exponentially as the optimal r is

approached) and the solution obtained for v = 501 differed

only slightly from the solution for r = 500 (the 1-norm of the

difference in the compensators obtained was less than 10).

I Although the same problem set-up was used for the H2 and

H solutions presented here, one problem was encountered

during the design process which must be mentioned. The author

3 originally sought to use bandpass filters on the disturbances

inputs to more accurately reflect the expected noises. This

worked well for the H 2 problem, but caused difficulty for the

H problem. When attempting to obtain solutions to equations

(7.21) and (7.22), an error message was generated which

3 indicated that the system presented was uncontrollable when r

was reduced below values which yielded spectral radii of

* approximately 0.3. This (uncontrollability) was known not to

be the case from prior analysis, so it was suspected that the

I problem was arising from some ill-conditioned terms in the

problem posed. In order to implement bandpass filters and

still satisfy the conditions reflected in equations (7.8) and

(7.9), it was necessary to place zeros in the filter which

were widely spaced in frequency. This is demonstrated in

3 Figure 7.5, which displays the Bode plot for one of the

original filters. Examination of this figure reveals that in

I 7-9
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obtain a two decade passband, it is necessary to place two

zeros six decades apart, for a difference in magnitude of 106

This large separation of zeros was suspected to be the cause

of the numerical problems, and when the bandpass filters were

I converted to high-pass filters, the problem completely

disappeared. For consistency between solutions, the highpass

filters were also used for the H2 problem, even though the

bandpass filters caused no problem there.

order Redutiona b Comtensator

As in the H2 case, the H solution yields a compensator

which is of the same order as the modified plant presented to

the Riccati equations, so model order reduction was required

for the compensator obtained for this case as well. This was

accomplished in a manner identical to that presented in

Chapter VI. A full description of both the full and the

reduced order compensators Is contained in Appendix C.

C e o Ay.te Relpresentation.

I The closed-loop representation for the H problem is

obtained the same manner as described in Chapter VI.

I
I
I
I
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Iii Flyout ila

To evaluate the performance of the different controllers

developed herein, it was necessary to develop a digital

simulation of the missile, simulating the control system, the

changing environment, the noise inputs, and the target and

missile geometry calculations. A PC-MATLAB script file was

created to carry out the simulation.

The simulation computes target position as a function of

time, calls a subroutine which generates disturbances as

functions of time, computes the parameter variations, computes

the closed-loop representation of the system with compensator,

computes the new guidance inputs, and increments the states

I and bearing to target for each time increment. After end-game

u conditions are indicated, the simulation calculates the point

of closest approach and stores the state, output, missile

position, and target position time histories and the miss

distance. The simulation uses a 0.02 second time step, and

I uses the PC-MATLAB function c2d to convert the state-space

* representation to a discrete iteration model.

F Results

I Each controller was evaluated over 112 flyouts, composed

of 16 scenarios each of which was run 7 times under different

conditions. The 7 conditions were: one flyout in the nominal

I
* 8-1
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dlsturbance Inputs (2,3), iree £lyouts with both parameter

variations and disturbance inputs (4,5,6), and one flyout in

i which the target position data is lost for two 0.5 second

intervals '7). The 16 engagement scenarios are described in

Table 8.1.

Table 8.1. Engagement Scenarios

Scenario Velocity Trajectory

1 200 m/s 900 offset

2 400 m/s 900 offset

3 600 m/s 90* offset

4 800 m/s 90 ° offset

i 5 200 m/s 45* offset

6 400 m/s 450 offset

7 600 m/s 450 offset

8 800 m/s 45" offset

9 200 m/s 6g pull-in

i 10 400 m/s 6g pull-in

11 600 m/s 6g pull-in

12 800 m/s 6g pull-in

13 200 m/s 6g pull-out

14 400 m/s 6g pull-out

15 600 m/s 6g pull-out

16 800 m/s 6g pull-out

i
i 8-2
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3.1-8.4, respectively. Tht rtsultant miss distances (to the

nearest meter) are tabulated in Tables 8.2-8.4, for the

Classical, H2 , and H. controllers, respectively.

Table 8.2. Classical Controller Miss Distances (m)

Environment/System Condition

Scenario 1 2 3 4 5 6 7

1 56 36 17 11 27 33 48

2 32 61 61 65 70 7 84

3 6 62 51 66 70 60 81

4 41 33 27 34 34 80 46

5 70 22 10 29 7 35 98

6 140 45 21 32 27 400 124

7 355 169 127 131 153 146 170

8 82 32 49 17 85 114 160

9 66 81 65 53 60 66 133

10 14 45 41 55 50 41 12

11 3 14 14 6 41 55 42

12 17 16 2 8 12 49 51

13 90 26 10 14 14 38 153

14 118 31 15 36 13 82 312

I 15 102 7 31 2 14 54 8

16 57 20 17 24 24 3 3

Mean 78 44 35 37 43 79 96

I Examination of the miss distance results reveals several

8-3
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I
Table 8.3. H Controller Miss Distances (m)

!2

Environment/System Condition

Scenario 1 2 3 4 5 6 7

1 54 8 21 5 2 26 59

2 31 40 68 34 35 24 24

3 2 40 42 42 42 22 67

I 4 16 9 11 13 9 38 5

- 5 62 23 30 12 3 50 123

6 134 95 78 116 8 12 137

7 355 234 325 128 ill 16 145

8 365 347 112 114 143 91 156

1 9 52 67 42 67 45 56 51

10 13 8 4 15 15 74 17

11 24 12 12 24 11 48 75

1 12 48 34 52 38 63 21 92

13 85 7 14 8 38 83 151

1 14 104 20 19 18 10 97 168

3 15 80 28 10 13 16 61 16

16 22 18 16 16 17 2 29

Mean 91 62 54 42 35 64 82

surprising trends. The first is that adding the parameter

variations to the simulation (Conditions 2 and 3) had a very

3 beneficial effect on miss distance as compared to the nominal

case (Condition 1). Analysis of the time history and

Sequations for the parameter variations reveals that this was

3 8-8
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Table 8.4. H Controller Miss Distances (m)

Environment/System Condition

Scenario 1 2 3 4 5 6 7

1 95 32 37 20 26 81 63

2 90 4 7 13 25 14 11

3 75 32 21 37 34 14 36

4 1 19 27 21 21 13 21

5 86 54 43 154 60 19 108

6 183 132 92 131 97 1 221

7 394 315 335 283 320 80 320

8 62 8 119 176 83 122 23

9 30 48 45 61 63 53 68

10 59 4 4 7 1 5 50

11 63 30 19 40 41 110 110

12 82 75 65 63 42 98 109

13 132 90 80 49 64 63 181

14 320 70 61 63 77 49 320

15 255 38 36 23 26 19 116

16 65 11 7 8 12 18 18

Mean 125 65 63 66 62 48 ill

caused by the fact that the missile begins its flight in a

stable configuration when the parameter variations are

present. The early trajectory for this condition exhibits

less oscillatory behavior, and thus achieves the required

Iheading correction earlier and with less oscillation than in

I
l 8-9
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I the nominal case. This favorable effect of parameter

variations was not anticipated, and complicates evaluation of

the robustness of the designs.

Another surprising trend evident in the tables is the

tendency for miss distance to not be dramatically affected by

noise inputs. Figures 8.5 and 8.6 display the time responses

for the H2 controller in Scenario 2, for both the nominal run

and the run with noise added, respectively. The effect of the

power plant noise is clearly evident in the plot, but miss

distance remains virtually unchanged. This would seem to

indicate that the controllers are more robust than is

practically possible, i.e. the more disturbances and parameter

variations that are added, the better the system performs. It

* is the author's opinion that the parameter variations

resultinc from the flight conditions specified and tested

I above happen to fall, by coincidence, in a region advantageous

to missile performance. This was unfortunate in this case

since the purpose of the study was to examine the detrimental

effects of these parameter variations. A more statistically

significant sample of parameter variations would have to be

run in order to truly get some measure of system robustness to

parameter variations and disturbances. Also, the time step

size (0.02 seconds) was initially set based on the nominal

runs, where it was maximized in order to decrease run time.

In retrospect, it is the author's opinion that this time

step size does not allow the full effects of the noise inputs

8
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I to be Eelt, mince the PC-MATLAB function c2d implements a

zero-order hold over the time step.

Much the same can be said for the loss of target runs, in

which it was hoped the H. would prove to be robust to

deterministic disturbances. Examination of the miss distance

data does not reveal any significant advantages for the H

controller. Examination of the state time histories, however,

does reveal some encouraging trends. The H controller does

indeed seem to be handling the disturbance better, as the

transients are less pronounced. Figure 8.7 shows the state

I time histories for scenario 1 using the classical controller,

and Figure 8.8 shows the state time histories for the same

scenario using the HO controller. Notice that both the body

rate and the antenna rate display less severe transients for

the system with the H controller.

I While these results do not quite exemplify the advantages of

designing controllers using the H2 and H methodologies,

sufficient data is available to reach some qualitative conclusions

and point the way to future investigations. These will be

discussed in Chapter IX.

I

I
I
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I

I The design study failed to reach the goal of providing

* quantitative data which exemplify the robustness of

controllers designed using the H2 and H design techniques.

However, the data obtained and the design process itself allow

several observations to be made. In addition, several lessons

were learned which will be of use in any follow-on effort arid

U which will be of interest to anyone working with these

methodologies.

The H 2 optimal control theory does indeed produce

controllers which can handle parameter variations well, and

the HO theory produces controllers which perform well also.

Though the quantitative results obtained were inconclusive,

i the qualitative results described in Chapter VIII do display

some encouraging trends. Neither the H2 nor the HC controller

were found to have any shortcomings in the scenarios

simulated. In fact, both performed quite well. This is

indicative of a sound approach, and a more refined simulation

and a broader spectrum of scenarios would probably yield more

meaningful results. It is the authok's opiunln L;Iat the

parameter variation results are realistic, but the simulation

requires a shorter iteration time step to fully realize the

effects of noise on the system. This refinement is suggested

I
* 9-1
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a i n a ) E :r t:: study.

I Problem

3 The complexity in setting up the problem and executing

the design effort for the H2 and H O designs creates a

i considerable work load for the designer, even on a problem as

simple as this one. It is hoped that the methodology

I developed herein for executing this process will prove to be

one of the most beneficial results of this study. In

addition, the reader may benefit from some of the lessons

3 learned during this design effort.

During execution of the H design process, a problem was

3 encountered concerning the weighting of the disturbance

inputs. This problem proved to be very difficult to isolate,

I and was finally traced to the use of bandpass filters to shape

these inputs. The problem was finally isolated by repeating

the entire H 2 design process, using the H C design algorithm.

3 By doing this, the author was able to isolate the problem as

occurring when the bandpass filters were introduced. A

3 bandpass filter with a one decade passband and two decade

rolloffs at both the low- and high-frequency ends requires

zeros which differ by five orders oi magnitude. Apparently,

this magnitude difference causes Ill-conditioning of the

state-space matrices, which results in a system which looks

i uncontrollable and unobservable to the computer algorithms

i
* 9-2
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I -l ic-l 6,)Lve ::!e Riccat i e4ua t L F .rin6

t.o hlgh-pass solved the prublem. The Jesigner i: L re~e~re

cautioned to guard against this occurrence.

Another lesson was learned concerning 'overmodifying' the

filters. In one instance, the author was able to get

perfectly acceptable performance from the system by

suppressing the gain on the body rate input command to a level

of -60 dB at low frequency and placing a pole at 0.000001

rad/sec. This configuration was extremely fragile with

respect to varying the other filter weights, however, as

I system performance degraded rapidly when other weights were

modified to 'tune' the performance. The bottom line on this

lesson is not to pursue modifications that look strange, even

* if they seem at first to yield good results.

Finally, a lesson was learned concerning converting the

I system to the form required for implementation of the existing

theory. During the initial design effort, the original system

was modified to meet the necessary conditions by using the

3 boresight error as an input, rather than a state. This

modification was required because only body rate, normal

3 acceleration, antenna rate, and antenna position were being

interpreted as commanded values, so missile heading had to be

I excluded from the state vector to preserve observability.

3 This resulted in omission of the boresight error resolver

dynamics, and exclusion of the natural loop closure provided

by the resolver. The exclusion of this loop resulted quite

9-3



f raturaily Ln t stabi!iiy prubIeins caused by ny 

closure, so that it was possible to obtain compensators which

proved to be unstable when the complete system dynamics were

_ simulated. This problem was overcome by introducing a

fictitious boresight error command to the problem. By adding

this fictitious command, the full system dynamics could be

included, and the stability problem disappeared. Thus, the

designer should always attempt to add components to the system

representation rather than omit any of the system dynamics

just to satisfy the conditions.

Areas Futhe Study

I There are many options available for carrying out further

study of this design effort. The most promising of these is

refinement of the simulation. It is suggested that the system

I simulation be converted to a Fortran routine, so that the

limitations of PC-MATLAB be circumvented. Such a simulation

3 could implement a much smaller time step, and thus bring out

the full effects of noisy disturbance inputs. Also, such a

simulation could be extended to five degrees of freedom, so

that motion in both the pitch and yaw planes as well as the

effects of gravity and drag could be fully effected.

Another area of further study related to the above is the

simulation of a broader spectrum of flyout scenarios. The

limited class of flyouts depicted herein could easily be

extended to a more representative sample of possible target

encounters. This task would also require conversion to a

9
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i faster Fortr 41L Eurmat for the 5 imulatiun, is e.tcii f1yout in

the PC-MATLAB subroutine takes in excess of 20 minutes, due to

memory-crunching and array size requirements.

I Another area of further study is high-frequency

unmodelled dynamics. The H controller design methodology isI
thought to be robust to unmodelled dynamics, and an

investigation of this would yield insight into the accuracy of

this conjecture.

3 Lastly, there are some techniques which allow the

designer to tailor the design to specific parameter variations

expected. Use of these algorithms should improve robustness

to parameter variations, as the resultant design should be

less conservative.

I

I
I
I
I

I
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I

3 The weighting filters derived for the optimal controller

formulations are listed below. The filters are given in

i state-space form and as Bode magnitude plots.

i State Space Representation

Using the nomenclature of Chapter VI, the weighting

functions Wl, W 2, W 3, and Wz can be expressed in state space

3 form as follows, where the A, B, C, and D subscripts match the

respective subcripts on W.I
A 1  [0.1 00 (A.1)

0 -0.0

i -0 0 0 0 0.1

10 0

C1 - 0 0 (A.3)

0 0

3 0 800

0 0 0 0 0

0 1 0 0 0

D 1  0 0 1 0 0 (A.4)

0 0 0 1 0

L 0 0 0 0 0

I
I A-i

I



I
-10 0 0 0l
0A2 • -40 0 0

0 0 -10 0 (A. 5)

L 0 0 0 -20

S- 99  0  0 00 -39.6 0 0

B2  0 0 - 9.9 0 (A.6)

L0 0 0 -19.8j

1 0 0 0
0 1 0 0

C2 - 0 0 0 0 (A.7)

0 0 1 0

0 0 0 1

1 0 0 0"

0 1 0 0

D2 - 0 0 0 0 (A.8)

0 0 1 0

I 0 0 0 1

3 [-5 0 0 0'

A3  0 [1 0 0j (A.9)
I0 0 -50 0

L0 0 0 -200JI
F 0 0 01

3 0 -0.99 0 0

3 0 0 -49.5 0 (A. 10)

LO 0 0 -198]

I
i &-2
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I 0. 0
* 0 1 0

1 3 0J 0A 11)

.0 0 0 01

I3 [0 0 1 0 (A. 12)
0 ~00 1

3 1 0 0 0 0 0 0
0 0 1 0 0 0 030 -3000 -130 0 0 0 0

A - 0 0 0 -0.01 0 0 0 (A.13)

0 0 0 0 0 1 0

0 0 0 0 -2000 -210 0

L0 0 0 0 0 0 -401

11 0 0 0 0

0 0 0 0 0

0 -100 0 0 03B = 0 0 0.01 0 0 (A.14)
0z
0 0 0 -30 0

L 0 0 0 -300 0

0 0 0 0 0 0 0

0 1.0010 00 0

C z0.0 01 0 (A.15)

0 0 0 0 0.1 1 0
L 0 0 0 0 0 0 1

* 1-3



0 0 0
D 0 0 0 (A.16)

z
0 0 0 0 0
0 0 0 0 0-

SBode Magnitude Plots

To provide the reader with a graphical interpretation of

I the above filter representations, Figures A.1 and A.2 show the

Bode magnitude plots for the filterinig of inputs 1 and 5

m and e s  ) in W1 (signals 2 thru 4 are equally weighted

com com

across the entire spectrum, so no graphical representation is

deemed necessary). Similarly, Figures A.3-A.6 provide the

Bode magnitude plots for filter W 2; Figures A.7-A.10 Bode

3 magnitude plots for filter W 3 ; and A.11-A.15 Bode magnitude

plots for Wz . Each of these plots is titled in reference to

3 the respective input, disturbance, or error filtered.
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I
Appendix Simulation Flyout Time Hi[ore

In this appendix, a representative sample of the flyout

time histories is given in the form of missiie and target

i trajectories and state history diagrams. The large number of

flyout runs precludes inclusion of all the flyout histories,

but this representative sample should give the reader

3 sufficient insight into actual flyout conditions.

,Ila. Tare Trajectories

Figure B.1 shows a typical missile and target trajectory

plot for scenario 4 (see Chapter VIII) in which the missile is

initially approaching the target broadside and the target is

I traveling at 800 m/s.

5 Figure B.2 shows the trajectory plots for scenario 8, in

which the missile is initially approaching the target at a 45

3 degree offset from head-on, and the target is traveling at 800

in/s.i Figure B.3 shows the trajectory plots for scenario 12,

where the missile is initially approaching the target head-on,

and the target executes a 6-g pull-out away from the missile.

The target is travelling at 800 m/s.

Figure B.4 shows the trajectory plot for scenario 16,

3 where the missile is initially approaching the target

broadside, and the target executes a 6-g pull-in toward the

missile. The target is travelling at 800 m/s.

I
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in i section, a repredtatie .ampie of the in>=iie

system state time histories will be given. All the state time

histories given herein are for simulation runs using the

classical controller. The state time histories for the H2 and

H n controller simulation runs display similar characteristics,

and are nearly indistinguishable to the unaided eye, with the

obvious exception of the additional states of the respective

untrollers. Therefore, only state tiaie histories for the

classical controller will be shown.

I Figures B.5 and B.6 show the state time histories for

scenario 4, as described above. Similarly, Figures B.7-B.12

show the state time histories for scenarios 8, 12, and 16, as

* labelled.
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l
i u. l l Reduced-Order Compensators

HL2 Full-orde Comeato

The state matrices for the full-order H2 compensator are

3 given below. The A matrices for the compensators listed

herein are very large, due to the large number of states

3 present, and so must be represented as partitioned matrices.

Also, scientific notation had to be used due to the many large

and small magnitudes of the numbers contained. This makes the

3 matrices difficult to comprehend at a glance, but no other

representation is possible. The full order H2 compensator can

3 be represented by the state-space description

Xcp2f A cp2f Xcp2f + Bcp2f Yp (C.1)

up =Ccp2f Xcp2f + Dcp2f yp (C.2)

where yp and up correspond to the plant error vector and control

3 input vector, respectively, as described in Chapter 6, and the

other terms are given by

I Xcp2f = compensator states

A cp2f [Alcp2f A2cp2f A3cp2f A4cp2flA5cp2f] (C.3)

Bcp2f [ Blcp2f I (C.4)

Ccp2f [Clcp2flC2cp2f C3cp2f C4cp2f C5cp2f] (C.5)

3 Dcp2f = ( Dlcp2f I (C.6)

3 where the above are given by

1
i C-i

I



1
-1.30e+02 1.69e+03 2.21e+02 5.06e+Ol -4.11e-02
-3.32e+00 -5.46e-01 0 -2.69e-01 4.07e-01
-3.55e-01 8.02e-01 0 -7.10e-01 7.26e-01
-9.61e-01 5.49e-01 0 -1.92e+00 2.50e-01
3.51e-0l 1.97e-01 -2.07e+0l 7.02e-01 -l.20e+0l

-8 .61e-04 -6 .61e-05 -3 .90e-02 -1.72e-03 -1.70e-03I
1.00e-06 1.88e-06 0 2.01e-06 -6.05e-06
-2.85e-02 7.78e-02 0 -5.70e-02 3.29e-02
2.73e-09 2.03e-09 0 5.47e-09 1.35e-09

-3.21e-01 6.07e+00 0 -6.42e-01 1.20e-01
1.13e+0l -3.50e-01 0 2.27e+01 2.03e-01

Al = -3.21e-06 7.94e-07 0 -6.43e-06 -1.98e-05
cp2f 2.68e-07 4.18e-08 0 5.37e-07 3.41e-07

-1.33e-01 -6.15e-02 0 -2.65e-01 -2.14e+00
3.50e-01 4.02e-01 0 7.Ole-01 1.05e-02

-7.49e-06 -4.00e-06 0 -1.49e-05 -1.06e-03
1.88e-01 -5.77e-03 0 3.76e-01 4.71e-01

0 0 0 0 0
6.62e-15 l.41e-14 0 1.32e-14 -5.lle-15

-1.27e-13 -2.89e-13 0 -2.55e-13 1.28e-13
0 0 0 0 0

2.lle-17 L.22e-15 0 4.23e-17 -7.94e-17
-4.05e-15 -2.45e-13 0 -8.lle-15 1.60e-14

0 0 0 0 0

(C.7

-8.58e-04 -1.20e-03 4.42e+03 6.46e+04 1.24e+03
-6.86e-08 2.54e-07 5.46e+00 -2.03e-04 -5.46e-01
1.61e-06 1.35e-04 1.97e+00 -l.08e-01 -1.97e-01
2.11e-07 5.37e-08 4.50e+00 -4.30e-05 -4.50e-01

-8.78e-04 -2.07e+01 -1.97e+00 5.43e-03 1.97e-01
-2.22e+03 -5.56e+05 -3.29e+00 4.45e+08 3.83e-03
1.00e+00 -1.36e-04 -1.88e-05 1.09e-01 1.88e-06
5.70e-08 -3.20e-09 -8.78e-01 2.56e-06 7.78e-02
3.29e-09 9.99e-03 -2.03e-08 -8.00e+00 2.03e-09

-6.47e-07 1.15e-08 -6.07e+O1 -9.23e-06 -3.92e+00
-7.10e-06 -8.51e-07 3.50e+00 6.80e-04 -3.50e-01

A2 2.92e+00 -1.94e-06 -7.94e-06 1.55e-03 7.94e-07
cp2f 1.58e-06 8.40e+O0 -4.18e-07 -6.72e+03 4.18e-08

-4.90e-06 4.12e-07 6.15e-01 -3.29e-04 -6.15e-02
1.64e-07 -3.89e-08 -4.02e+00 3.11e-05 4.02e-01
8.53e-02 3.12e-03 4.00e-05 -2.49e+00 -4.00e-06
1.66e-01 1.64e-03 5.77e-02 -1.31e+00 -5.77e-03

0 0 0 0 0
1.08e-14 6.08e-14 -1.41e-13 -4.86e-11 1.41e-14
-1.06e-12 -5.01e-13 2.89e-12 4.Ole-10 -2.89e-13

0 0 0 0 0
1.17e-16 9.16e-16 -1.22e-14 -7.33e-13 1.22e-15

-5.68e-14 -2.04e-13 2.45e-12 1.63e-10 -2.45e-13
L 0 0 0 0 0

(C.8)

I

I



-4.33e+00 -8.58e-04 -4.16e-02 -1.62e-01 4.90e+O
-5.89e-01 -6.86e-08 2.54e-07 0 1.00e+00
-3.55e-01 1.6le-06 1.35e-04 0 0
-4.51e-01 2.11e-07 5.37e-08 0 1.00e+00
3.51e-01 -8.78e-04 -6.79e-06 2.07e+O1 0

-8.62e-04 7.65e+03 -3.81e+05 1.34e-04 -5.15e-07
1.00e-06 -8.62e-07 -1.36e-04 0 0

-2.85e-02 5.70e-08 -3.20e-09 0 0
2.73-i-09 3.29e-09 9.99e-03 0 0

-3.21e-O1 -6.47e-07 1.15e-08 0 0
-2.86e+01 -7.10e-06 -8.51e-07 0 0
-3.21e-06 -7.07e+00 -1.94e-06 0 0

A3 =~ 2.68e-07 1.58e-06 -1.15e+01 0 0
A cp2f -1.33e-01 -4.90e-06 4.12e-07 -5.00e+00 0

3.50e-01 1.64e-07 -3.89e-08 0 -1.00e+00
-7.49e-06 8.53e-02 3.12e-03 0 0
1.88e-01 1.66e-01 1.64e-03 0 0

0 0 0 0 0

6.62e-15 1.08e-14 6.08e-140
-1.27e-13 -1.06e-12 -5.01e-13 0 0

S0 0 0 0 0
2.lle-17 1.17e-16 9.16e-16 0 0

-4.05e-15 -5.68e-14 -2.04e-13 0 0
0 0 0 0 0

(C.9)

I -1.94e-11 7.72e-01 -2.88e+04 1.04e+02 8.85e+00
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1.00e+00 0 0 0

6.31e-03 2.94e-02 -3.68e-02 -5.56e-06 4.48e-083 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0I0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A4cp2f 0 0

0 0 0 0 0

-5.00e+O1 0 0 0 0
0 -2.00e+02 0 0 0
0 0 -1.00e+00 0 0
0 0 0 0 1.00e+00
0 0 0 -3.00e+03 -1.30e+02
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0I0 0 0 0 0

(C.10)
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2.05e+O1 9.54e-06 3.86e-06 1.47e-02

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

-1.71e-02 -5.75e+04 -6.40e+03 3.83e+05
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

AScp2f 0 0 0 0 (C.11)
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
-1.00e-02 0 0 0

0 0 1.00e+00 0
0 -2.00e+03 -2.10e+02 0

0 0 0 -4.00e+01

-5.89e-07 -9.14e-04 -1.89e-03 -8.58e-04 -1.07e-06
-5.46e-01 -5.89e-01 4.07e-01 -6.86e-08 2.54e-07
-1.97e-01 -3.55e-01 7.26e-01 1.61e-06 1.35e-04
-4.50e-01 -4.51e-01 2.50e-01 2.11e-07 5.37e-08
1.97e-01 3.51e-01 -6.83e+00 -8.78e-04 -6.79e-06

-3.36e-06 -8.62e-04 -1.73e-03 -2.45e-03 -1.89e-06
1.88e-06 1.00e-06 -6.05e-06 -8.62e-07 -1.36e-04
7.78e-02 -2.85e-02 3.29e-02 5.70e-08 -3.20e-09
2.03e-09 2.73e-09 1.35e-09 3.29e-09 9.99e-03
6.07e+00 -3.21e-01 1.20e-01 -6.47e-07 1.15e-08

-3.50e-01 1.13e+01 2.03e-01 -7.10e-06 -8.51e-07
Bi = 7.94e-07 -3.21e-06 -1.98e-05 2.92e+00 -1.94e-06

4.18e-08 2.68e-07 3.41e-07 1.58e-06 8.40e+00

-6.15e-02 -1.33e-01 -2.14e+00 -4.90e-06 4.12e-07
4.02e-01 3.50e-01 1.05e-02 1.64e-07 -3.89e-08

-4.00e-06 -7.49e-06 -1.06e-03 8.53e-02 3.12e-03
-5.77e-03 1.88e-01 4.71e-01 1.66e-01 1.64e-0331.OOe+O0 0 0 0 0
1.41e-14 6.62e-15 -5.11e-15 1.08e-14 6.08e-14

-2.89e-13 1.00e+02 1.28e-13 -1.06e-12 -5.01e-13
0 0 1.OOe-02 0 0

1.22e-15 2.11e-17 -7.94e-17 1.17e-16 9.16e-16
-2.45e-13 -4.05e-15 1.60e-14 -3.00e+02 -2.04e-13

0 0 0 0 4.00e+01

(C.12)

I
* C- 4

I



K -6 94e-01 2.I9et 1 2.38e+00 6. e-, 7.-4
cpZf L I. 6e-03 -6.67e-07 -4.14e--04 -9.35e-09 3.46e-37

3 (C.13)

C2cp~f [ -3.74e-10 -1.55e-05 5.75e+O1 8.39e+02 1.61e+Ol ]
cp2f -226e+01 -5.92e+03 -3.50e-02 4.73e+06 4.08e-05

(C.14)

3 [ -5.63e-02 8.48e-09 -5.40e-04 -2.11e-03 6.37e-01

cpdf - 2.67e-09 8.14e+Ol -4.06e+03 1.43e-06 -5.48e-09

(c.15)

C4[ -2.52e-13 -2.95e-03 -3.75e+02 1.35e+00 1.14e-01
cp2f -1 .05e-02 -1.03e-02 -3.91e-04 -5.92e-08 4.76e-10

(C. 16)

C5 2.67e-01 1.23e-07 5.Ole-08 1.9le-04 1 (C17)

cp2f = -1.82e-04 -6.12e+02 -6.81e+01 4.07e+03 (

Dlcp 2 f = 0 0 0 0 0 (C.18)

I U 2 Reduced Order C n

The above compensator can be reduced in size by use of the

Hankel singular value elimination technique described in Chapter

3 VI. The Hankel singular values for the H2 ccmpensator are

given in Table C.I. The last 13 Hankel singular values were

3 eliminated to produce the reduced order compensator, as

indicated by the dashed line in Table C.1. The

resultant reduced order compensator, composed of 11 states,

3 can be represented by

x A x + B (.9
cp2r cp2r cp2r cp2r yp (0.19)

Up = cp2r Xcp2r + Dcp2r Yp (C.20)

C
I
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I3H 2 C,[, 0.1. H 2 [ Hank-i1 .3 A1J,.1!a, value±,T C C. V.=

4 02e+Oi
3 15e+Ol
9 ooe+OO0. 8e+OO

2. 69e+00
2 06e+00
1. 98e+0035 . 56e-01
4. 56e-01
3 .,4e-J)1I................ ... .?. ... ...--.. 0 .! 2..................
1. 76e-02

4. 27e-02S2. 58e=02
1. 25e-02
7. 30e-03
2.26e-03
9 .07e-04
3.43e-04
1.69e-04

I 7. 03e-06
3. 71e-06
3.41e-07
1.88e-08

3 wher e

Xcp2r = compensator states

3 Acp2r = [Alcp2rIA2cp2r] (C.21)

3 Bcp2r = [ Bl p I (C.22)

Ccp2r = [Clcp2rIC2cp2r] (C.23)

I D = E Dl I (C.24)

cp2r cp2rI
I
I
3 C-6
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1
and

-7.19e+04 2.61e+05 1.14e+05 -1.03e+04
-4.19e+04 1.52e+05 6.69e+04 -6.Ole+03
6.07e+02 -2.20e+03 -9.70e+02 8.94e+O1

-1.42e+04 5.18e+04 2.27e+04 -2.04e+03
8.69e+02 -3.16e+03 -1.38e+03 1.20e+02

Al cp2r -3.06e+03 l.lle+04 4.87e+03 -4.22e+02 (C.25)6.64e+03 -2.41e+04 -1.35e+04 9.42e+02

-2.24e+03 8.15e+03 3.57e+03 -3.21e+02
8.66e+02 -3.14e+03 -1.37e+03 1.24e+02

-2.37e+02 8.63e+02 3.75e+02 -3.13e+Ol3 1.02e+03 -3.70e+03 -1.62e+03 1.46e+02

1.15e+05 -1.16e+05 -1.44e+05 3.19e+03
6.73e+04 -6.79e+04 -8.41e+04 1.86e+03

-9.84e+02 9.66e+02 1.23e+03 -2.68e+Ol
2.29e+04 -2.31e+04 -2.86e+04 6.34e+02

-1.38e+03 1.44e+03 1.72e+03 -3.83e+Ol
A2 = 4.85e+03 -5.08e+03 -6.03e+03 1.35e+02 (C.26)

cp2r -1.06e+04 1.07e+04 1.32e+04 -2.95e+02

3.59e+03 -3.63e+03 -4.50e+03 -9.96e+Ol
-1.38e+03 1.39e+03 1.73e+03 -3.77e+Ol
3.73e+02 -4.02e+02 -4.57e+02 1.05e+01

L-1.63e+03 1.65e+03 2.04e+03 -4.57e+01

5.71e+04 8.94e+03 6.07e+06
3.33e+04 5.21e+03 3.54e+06

-5.18e+02 1.82e+Ol -5.13e+04
1.13e+04 1.71e+03 1.20e+06

-6.31e+02 -2.66e+02 -7.35e+04
A3 cp2r 2.17+03 9.53e+02 2.58e+05 (C.27)

-5.15e+03 -1.08e+03 -5.59e+05
1.78e+03 2.78e+02 1.89e+05

-7.07e+02 -6.49e+Ol -7.28e+04
1.43e+02 1.01e+02 2.00e+04

L -8.13e+02 -1.21e+02 -8.61e+04

-4.75e-03 -1.39e-01 -4.40e-02 9.43e+00 2.Ole+Ol
7.37e-02 -l.02e-01 -2.78e-02 5.24e+00 -3.53e+Ol

-1.52e+00 9.14e-01 3.40e-02 -1.16e-02 -2.48e+00
-9.95e-02 -l.19e+00 -1.20e-01 1.74e+00 -5.03e-01
4.73e+00 -3.56e+00 4.78e-03 -1.59e-02 6.89e-01

B1cp2r 1.55e+00 9.12e+00 8.65e-01 2.97e-01 -l.13e+00cpr 1.54e+00 -5.07e+00 -3.00e-01 -1.16e+00 -6.27e+00
I1.26e-02 -2.72e-02 9.44e-04 -9.23e+01 -2.92e-01

4.02e+00 -5.21e-01 3.15e-01 2.50e-ol -1.72e+00
-5.46e+00 1.34e+00 7.08e-01 6.79e-02 1.45e-01

L -2.77e-02 1.08e-01 5.18e-03 -3.13e-01 -2.97e-01
(C.28)

I
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I 3.8le-02 -4.68e-02 -7 .45e-O 9.04e-01 (C29)

cp2r 1 I.07e+03 -3.91e+03 -1.71e+03 1.54e+02 j

C2 [ -3.71e+00 -6.Ole+00 5.58e+00 -2.78e-02 (C.30)cp2r [ -1.72e+03 1.74e+03 2.16e+03 -4.78e+O1 (

C3 [ -1.47e+01 3.88e+O1 -1.58e+Ol 1(C.31)

cp2r -8.56e+02 -1.34e+02 -9.09e+04 J

Dlcp2r = 0 0 0 0 0 (C. 32)

Ii C Full.J Or~der Compensator

The full order compensator developed for the H design can be

3represented in state-space form as
i cpif = Acpif Xcpif + Bcpif Yp (C.33)

up = Ccpif Xcpif + Dcpif yp (C.34)

I where yp and up correspond to the plant error vector and

U control input vector as before, and the other terms are given

by

I Xcpif = compensator states

Acpif = AlcpifJA 2cpifIA3 cpif A4cpiflA5cpif] (C.35)

Bcpif = C Blcpif I (C.36)

Ccptf = (ClcpfIC2 cpifIC 3 cpiftC 4cpif C 5 cpif I (C.37)

i Dcpif = [ Dlcpif I (C.38)

where

i
I
3 C-8

I



-I.30e+02 I.69e+03 4.01e+02 5.06e+0 1 -4.84e-02 
-3.32e+00 -5.46e-01 0 -2.69e-01 4.07e-01
-3.55e-01 8. 02e-01 0 -7.10e-01 7. 26e-01
-9.61e-01 5.49e-01 0 -1.92e+00 2.50e-01
3.51e-01 1.97e-01 -2.07e+Ol 7 .02e-01 -i.20e+0l

-3.92e-02 1.87e+00 1.17e 03 2.58e-02 -3.44e-01
1.00e-06 1.88e-06 0 2.01e-06 -6.05e-06

-2.85e-02 7.78e-02 0 -5.70e-02 3.29e-02
2.73e-09 2.03e-09 0 5.47e-09 1.35e-09

-3.21e-01 6.07e+00 0 -6.42e-01 1.20e-01
1.13e+Ol -3.50e-01 0 2.27e+Ol 2.03e-01

Al -3.21e-06 7.94e-07 0 -6.43e-06 -1.98e-05
Alcpif 2.68e-07 4.18e-08 0 5.37e-07 3.41e-07

-1. 33e-01 -6. l5e-02 0 -2. 65e-01 -2. 14e+00
3.50e-01 4.02e-01 0 7.Ole-01 1.05e-02

-7.49e-06 -4.00e-06 0 -1.49e-05 -1.06e-03
1.88e-01 -5.77e-03 0 3.76e-01 4.71e-010 0 0 0 0

8.24e-13 -3.12e-11 0 1.64e-12 -2.05e-12
-l.61e-ll 7.39e-10 0 -3.22e-11 3.85e-11

0 0 0 0 0

8.60e-16 -2.34e-14 0 1.72e-15 1.36e-14
-1.54e-13 4.60e-12 0 -3.09e-13 -2.77e-12

0 0 0 0 0

(C.391

-2.60e-02 -2.91e+02 2.22e+04 3.21e+05 1.22e+03
-6.86e-08 2.54e-07 5.46e+00 -2.03e-04 -5.46e-01
1.61e-06 1.35e-04 1.97e+00 -l.08e-01 -1.97e-01
2.11e-07 5.37e-08 4.50e+00 -4.30e-05 -4.50e-01

-8.78e-04 -2.07e+01 -1.97e+00 5.43e-03 1.97e-01
-2.75e+33 -6.67e+06 -1.10e+05 5.34e+09 -1.16e+02
1.00e+00 -1.36e-04 -1.88e-05 1.09e-01 1.88e-06
5.70e-08 -3.20e-09 -8.78e-01 2.56e-06 7.78e-02
3.29e-09 9.99e-03 -2.03e-08 -8.00e+00 ?.03e-09

-6.47e-07 1.15e-08 -6.07e+O1 -9.23e-06 -3.92e+00
-7.10e-06 -8.51e-07 3.50e+00 6.80e-04 -3.50e-01

A2 2.92e+00 -1.94e-06 -7.94e-06 1.55e-03 7.94e-07
cpif 1.58e-06 8.40e+00 -4.18e-07 -6.72e+03 4.18e-08

-4.90e-06 4.12e-07 6.15e-01 -3.29e-04 -6.15e-02
1.64e-07 -3.89e-08 -4.02e+00 3.11e-05 4.02e-01
8.53e-02 3.12e-03 4.00e-05 -2.49e+00 -4.00e-06
1.66e-01 1.64e-03 5.77e-02 -1.31e+00 -5.77e-03

0 0 0 0 0
-4-85e-14 8.08e-13 -3.12e-10 -6.46e-10 -3.12e-ll
-5.25e-12 -4.10e-11 -7.39e-09 3.28e-08 -7.39e-10

o 0 0 0 0
2.04e-16 -4.65e-15 -2.34e-13 -3.72e-12 -2.34e-14

-5.68e-14 -1.73e-12 -4.60e-li 1.38e-09 -4.60e-12
L 0 0 0 0 0

(C.40)
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I -4.33e+00 1 .25e+00 -2.57e+02 -I.93e-01 4.90e+01
-5.89e-01 -6.86e-08 2.54e-07 0 1.00e+00
-3.55e-01 i.61e-06 1.35e-04 0 0
-4.51e-01 2.lle-07 5.37e-08 0 1.00e+00
3.51e-01 -8.78e-04 -6.79e-06 2.07e+l 0

-6.63e-03 2.73e+04 -5.88e+06 -1.42e+00 -1.53e-02
1.00e-06 -8.62e-07 -1.36e-04 0 0

-2.85e-02 5.70e-08 -3.20e-09 0 0
2.73e-09 3.29e-09 9.99e-03 0 0

-3.21e-01 -6.47e-07 1.15e-08 0 0
-2.86e+01 -7.10e-06 -8.51e-07 0 0
-3.21e-06 -7.07e+00 -1.94e-06 0 0

A3c i = 2.68e-07 1.58e-06 -i.15e+01 0 0
f -1.33e-01 -4.90e-06 4.12e-07 -5.00e+00 0

3.50e-01 1.64e-07 -3.89e-08 0 -1.C0e+00
-7. 49e-06 8.53e-02 3.12e-03 0 0
1.88e-01 1.66e-01 1.64e-03 0 3

o 0 0 0 0
8.24e-13 -4.85e-14 8.08e-13 0 0

-1.6le-11 -5.25e-12 -4.lOe-11 0 0
o 0 0 0 0

8.60e-16 2.04e-16 -4.65e-15 0 0
-1.54e-13 -5.68e-14 -1.73e-12 0 0

0 0 0 0 0

(C.41)

3 -1.20e-03 7.73e-01 -2.87e+04 1.04e+02 8.85e+00
0 0 0 -9.28e-21 -9.28e-18
0 0 0 4.83e-22 4.83e-19
0 0 0 -2.22e-21 -2.22e-18
0 1.00e+00 0 7.64e-21 7.64e-18

-5.13e-02 -5.22e-02 -I.lle+03 -1.65e-01 -1.33e-03
0 0 0 2.56e-21 2.56e-18
0 0 0 -2.72e-22 -2.72e-19
0 0 0 -3.48e-23 -3.48e-20
0 0 0 1.77e-21 1.77e-18
0 0 0 7.00e-20 7.00e-170 0 0 7.79e-21 7.79e-18

i A4cpif 0 0 0 7.63e-21 7.63e-18
0 0 0 -8.30e-21 -8.30e-180 0 0 8.50e-22 8.50e-19

-5.00e+O1 0 0 2.20e-20 2.20e-17
0 -2.00e+02 0 -7.15e-20 -7.15e-17
0 0 -1.00e+00 0 0
0 0 0 2.55e-22 1.00e+00
0 0 0 -3.00e+03 -i.30e+02
0 0 0 0 0
0 0 0 7.77e-25 7.77e-22
0 0 0 -1.55e-22 -1.55e-193 0 0 0 0 0

(C.42)

I
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2.44e+01 -3.43e+00 7 .85e-u 1 2.70e+02
0 -l.Oe-15 -1.01e-14 0
o -4.07e-16 -4.07e-15 0

0 o . 45e-16 1. 45e-15 0
0 1.12e-14 1.12e-13 0

1.80e+02 -6.94e+04 1.01e+04 6.25e+06
0 2.76e-17 2.76e-16 0
0 -4.68e-16 -4.68e-15 00 -7.44e-18 -7.44e-170

2.2le-15 2.21e-14 0
0 1.41e-14 1.41e-13 0
0 4.17e-16 4.17e-15 0

A5cpif 0 2.55e-15 2.55e-14 0 (C.43)
0 -7.32e-16 -7.32e-15 0
0 9.12e-16 9.12e-15 0
0 5.21e-15 5.21e-14 0
0 3.70e-14 3.70e-13 0
0 0 0 0
0 -9.90e-17 -9.90e-160

-2.19e-16 -2.19e-15 0
1.00e-02 0 0 0

0 5.31e-19 1.00e+00 0
0 -2.00e+03 -2.10e+02 0

0 0 0 -4.00e+0l

-5.89e-07 -9.14e-04 -1.89e-03 -8.58e-04 -1.07e-06
-5.46e-01 -5.89e-01 4.07e-01 -6.86e-08 2.54e-07
-1.97e-01 -3.55e-01 7.26e-01 1.6le-06 1.35e-04
-4.50e-01 -4.51e-01 2.50e-Ol 2.11e-07 5.37e-08
1.97e-01 3.51e-01 -6.83e+00 -8.78e-04 -6.79e-06

-3.36e-06 -8.62e-04 -1.73e-03 -2.45e-03 -1.89e-06
1.88e-06 1.00e-06 -6.05e-06 -8.62e-07 -1.36e-04
7.78e-02 -2.85e-02 3.29e-02 5.70e-08 -3.20e-09
2.03e-09 2.73e-09 i.35e-09 3.29e-09 9.99e-U36.07e+00 -3.2le-01 1.20e-01 -6.47e-07 1.15e-08

-3.50e-01 1.13e+01 2.03e-01 -7.10e-06 -8.51e-07Bl cpif= 7.94e-07 -3.21e-06 -1.98e-05 2.92e+00 -1.94e-06
4.18e-08 2.68e-07 3.4le-07 1.58e-06 8.40e+00

-6.15e-02 -1.33e-01 -2.14e+00 -4.90e-06 4.12e-07
4.02e-01 3.50e-01 1.05e-02 1.64e-07 -3.89e-08

-4.00e-06 -7.49e-06 -1.06e-03 8.53e-02 3.12e-03
-5.77e-03 1.88e-01 4.71e-01 1.66e-01 1.64e-03
1.00e+00 0 0 0 0

-3.12e-l1 8.24e-13 -2.05e-12 -4.85e-14 8.08e-13
7.39e-10 1.00.e+02 3.85e-11 5.25e-12 -4.10e-l1

0 0 1.00e-02 0 0
-2.34e-14 8.60e-16 1.36e-14 2.04e-16 -4.65e-15
4.60e-12 -1.54e-13 -2.77e-12 -3.00e+02 -1.73e-12

L 0 0 0 0 4.00e+0l

(C.44)
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-6 JSe -Ot 2 . 20e+01 5. 21e-,0 , 5. ~7e -O1 -6 5 e -C4
CpU L~ -4.08e-04 1.99e-02 1.25e+O1 2.93e-04 -3.64e-02 j

C2ci 3.6e0 -3.78e+00 2.88e+02 4.17e+03 1.59e+O1]
cpi 281e01-7.10e+04 1.17e+03 5.68e+07 -1.23e+00

(C. 46)

IC3 = 5. 63e-02 1.63e-02 -3.33e+00 -2.50e-03 6.37e-011
cpif L7.97e-05 2.91e+02 -6.26e+04 -1.51e-02 1.63e-04J

(C. 47)

Cpif -1.lle-02 -]..lle-02 1.18e+O1 1.76e-03 -1.42e-05

I (C. 48)

C5 3.17e-01-4.46e-02 1.02e-02 3.51e+00(C49
CSpif 1.9[ e 0 -7.39e+02 -1.07e+02 6.65e+04 (4)

I D1ci = 0 0 0 0 0-L(.0
cpi 0 0 0 0 0](.0

IIi., Reue Ore opnao

As in the H2 case, the compensator obtained from the H C

design was reduced via Hankel singular value elimination. The

Hankel singular values for the full-order H O compensator are

given in Table C.2. As in the H 2 case, the last 13 singular

I values were eliminated, as indicated by the dashed line in

Table C.2. The resultant reduced order compensator, composed

of 11 states, can be represented by

I Xcpir =A cpIr x cpir + Bcpir Y p(.1

up =Ccpir xcpir +Dcpir Y p (C.52)

C- 12



Table 0.2. HOO Compensator Hankel Singular Values

4. 91e+02
4. 78e+-02
9. 39e+00
7. 04e4-00
3. 15e+00I 2 . 20e+00
1 . 7 9e +O0O
6. 29e-01
1. 48e-0iU1.2e0
741e-02
6. 2le-02
1.73e=02
1. 40e-02

6.l0e-03
2. 68e-03
1. 37e-03I 1.10~e-03
2. 21e-04
4. 83e-05
6 .67e-06

where

x cpr=compensator states

A cpr= [Al 1pr A2 cprI(C. 53)

BcpI r = [ B1lcpir I (C.54)

C cpir = [Cl cpir IC2 cplr I (C.55)

D cpr= E D1 p I (C.56)
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and

-3.57e+05 -4.72e+06 -2.24e+06 9 .96e+05
6.62e+04 8.73e+05 4.15e+05 -1.84e+05

-5.00e+04 -6.61e+05 -3.13e+05 1.39e+05
--7.16e+04 -9.45e+05 -4.49e+05 1.99e+05
-8.59e+03 -I.13e+05 -5.38e+04 2 .39e+04

Alcp2r 2.81e+04 3.72e+05 1.76e+05 -7.85e+04 (C.57)-1.26e+04 -1.66e+05 -7.90e+04 3.51e+04

5.95e+03 7.85e+04 3.73e+04 -1.65e+04
-5.06e+03 -6.68e+04 -3.17e+04 1.41e+04
1.08e+03 1.42e+04 6.77e+03 -3.Ole+03

L -7 .28e+02 -9.61e+03 -4.56e+03 2.02e+03

-6.15e+05 1.49e+06 -1.40e+06 6.15e+05F 1.13e+05 -2.76e+05 2.60e+05 -1.13e+05
-8.61e+04 2.09e+05 -1.97e+05 8.61e+04
-1.23e+05 2.99e+05 -2.82e+05 1.23e+05
-1.47e+04 3.59e+04 -3.38e+04 1.47e+04

A2 = 4.85e+04 -1.18e+05 l.lle+05 -4.84e+04 (C.58)I2cp2r 2.16e+04 5.28e+04 -4.96e+04 2.16e+041.02e+04 -2.48e+04 2.34e+04 -1.04e+04

-8.69e+03 2.11e+04 -1.99e+04 8.71e+03
1.86e+03 -4.52e+03 4.26e+03 -1.85e+03

-1.25e+03 3.04e+03 -2.86e+03 1.25e+03

6.23e+05 4.87e+06 -l.Ole+08
-1.15e+05 -9.01e+05 1.87e+07

-8.72e+04 6.81e+05 -1.41e+07
1.24e+05 9.75e+05 -2.02e+07

-1.49e+04 -1.16e+05 -2.43e+06
A3 = -4.90e+04 -3.82e+05 7.97e+06 (C.59)

-2.19e+04 -1.71e+05 -3.56e+06
-1.03e+04 -8.lle+04 1.68e+06
-8.81e+03 -6.92e+04 -1.43e+06
-1.88e+03 -1.46e+04 3.05e+05

-1.26e+03 -9.94e+03 -2.06e+05

-1.37e-01 1.12e+00 4.00e-01 9.99e+00 -5.32e+00
1.14e-01 -1.70e-01 -5.26e-02 -1.48e+00 -3.83e+01

-3.30e-01 1.00e-01 2.43e-02 1.41e+00 -1.29e+1O
1.43e-01 -1.27e+00 1.76e-02 1.83e+00 2.81e-01
8.35e-01 -6.33e-01 4.22e-02 -8.14e-02 2.80e+00

B1 = 1.30e+O0 9.03e+00 5.48e-01 1.96e+00 -1.22e+00
cp2r 2.25e+00 -8.31e+00 -2.54e-01 -4.97e+00 -3.78e+00

8.56e-02 -1.37e+00 8.30e-02 9.33e+01 -1.37e-01
-4.10e+O0 3.58e+00 -5.17e-01 3.70e+00 -4.33e-01
-4.33e+00 1.89e-01 5.14e-01 -1.33e+Ou -3.12e-01

L -2.46e-01 2.65e-01 3.40e-02 6.73e-01 -2.47e-01

(C.60)
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i -3.29e-01 -2.53e+00 -2.83e+00 1.45e+00 1
cp2r -4.07e+03 -5.37e+04 -2.55e+04 1.13e+04 I

C2 [5.48e-01 -4.63e+00 -2.82e+00 1.21e+00 (C.62)

cp2r L- 7 .00e+0 3  1.70e+04 -1.60e+04 7.00e+03 I

C3~ ~ 3.98e+00 6.01e+01 -8.21e+01 (C63i C3cp2r = 7.09e+03 -5.54e+04 -. 15e+06 (C.63)

0  0  0  0 0
ilcp2r (C.64)

I zisQf of Full- In& Reduced-Order Compensators

To gain some insight into the effect of using the reduced

order compensators above, it is necessary to compare the

singular value plots of the respective compensators. Figure

i C.l shows the singular value plot for the full-order H2

compensator, and Figure C.2 is the singular value plot for the

reduced-order compensator. Figure C.3 shows these two plots

surerimposed. As can be seen from the plots, the only major

difference occurs at very low frequency, where there are some

directions of the input vector which are magnified more for

the reduced-order compensator than for the full-order one.

This difference would generate some steady-state error if the

simulation were run for a very long time. The short period of

the simulation (eight seconds maximum), makes this effect

inconsequential, so the reduced order compensator can be used.

Likewise, the singular value plots for the full- and

reduced-order HW compensators, shown in Figures C.4 and C.5,

respectively, display a similar trend when superimposed, as

seen in Figure C.6. As in the H 2 case, this difference is

I
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I
nudged irlcon3equential for the ~hort period of 3imu1at~on

herein used, and the reduced-order compensator can be used.
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